128 lines
3.5 KiB
TeX
128 lines
3.5 KiB
TeX
\documentclass[a4paper,10pt]{article}
|
|
\usepackage{myXsim}
|
|
\usepackage{pgfplots}
|
|
\pgfplotsset{compat = newest}
|
|
\tikzexternalize
|
|
|
|
\author{Benjamin Bertrand}
|
|
\title{Fonctions tableaux - Cours \hfill (suite)}
|
|
\date{2023-01-10}
|
|
|
|
\pagestyle{empty}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\bigskip
|
|
|
|
\setcounter{section}{2}
|
|
\section{Les variations d'une fonction}
|
|
|
|
\begin{definition}[ Variations d'une fonction ]
|
|
Soit $f$ une fonction définie sur un intervalle $I$.
|
|
|
|
\medskip
|
|
|
|
\begin{minipage}{0.5\linewidth}
|
|
On dit que $f$ est \textbf{croissante} sur $I$ si et seulement \dotfill
|
|
\medskip
|
|
\\.\dotfill
|
|
\medskip
|
|
\\.\dotfill
|
|
\medskip
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}{0.4\linewidth}
|
|
\begin{tikzpicture}[scale=0.6]
|
|
\begin{axis}[
|
|
axis lines = center,
|
|
%grid = both,
|
|
xlabel = {$x$},
|
|
xtick distance=1,
|
|
xmin=0, xmax=2.5,
|
|
xticklabel=\empty,
|
|
ylabel = {$y$},
|
|
yticklabel=\empty,
|
|
ymin=0, ymax=5,
|
|
legend pos = north west,
|
|
]
|
|
\addplot[domain=1:2,samples=30, color=red, very thick]{x*x};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\end{minipage}
|
|
|
|
\begin{minipage}{0.5\linewidth}
|
|
On dit que $f$ est \textbf{décroissante} sur $I$ si et seulement \dotfill
|
|
\medskip
|
|
\\.\dotfill
|
|
\medskip
|
|
\\.\dotfill
|
|
\medskip
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}{0.4\linewidth}
|
|
\begin{tikzpicture}[scale=0.6]
|
|
\begin{axis}[
|
|
axis lines = center,
|
|
%grid = both,
|
|
xlabel = {$x$},
|
|
xtick distance=1,
|
|
xmin=0, xmax=2.5,
|
|
xticklabel=\empty,
|
|
ylabel = {$y$},
|
|
yticklabel=\empty,
|
|
ymin=0, ymax=5,
|
|
legend pos = north west,
|
|
]
|
|
\addplot[domain=1:2,samples=30, color=red, very thick]{5 - x*x};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\end{minipage}
|
|
\end{definition}
|
|
|
|
\begin{definition}[Monotone]
|
|
Une fonction $f$ est dite \textbf{monotone} sur un intervalle $I$ si et seulement si elle ne change pas de variations sur cet intervalle.
|
|
\end{definition}
|
|
|
|
\begin{definition}[ Extremum d'une fonction ]
|
|
Soit $f$ une fonction définie sur un intervalle $I$.
|
|
|
|
\medskip
|
|
|
|
\begin{minipage}{0.5\linewidth}
|
|
On dit que $f$ a pour maximum $M$ sur l'intervalle $I$ si et seulement si
|
|
\medskip
|
|
\\.\dotfill
|
|
\medskip
|
|
\\.\dotfill
|
|
\medskip
|
|
|
|
On dit que $f$ a pour minimum $m$ sur l'intervalle $I$ si et seulement si
|
|
\medskip
|
|
\\.\dotfill
|
|
\medskip
|
|
\\.\dotfill
|
|
\medskip
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}{0.4\linewidth}
|
|
\begin{tikzpicture}
|
|
\begin{axis}[
|
|
axis lines = center,
|
|
%grid = both,
|
|
xlabel = {$x$},
|
|
xtick distance=1,
|
|
xticklabel=\empty,
|
|
ylabel = {$y$},
|
|
yticklabel=\empty,
|
|
legend pos = north west,
|
|
]
|
|
\addplot[domain=-0.8:0.8,samples=30, color=red, very thick]{x*(x-1)*(x+1)};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\end{minipage}
|
|
|
|
\end{definition}
|
|
\end{document}
|