Bertrand Benjamin
99dea014f0
All checks were successful
continuous-integration/drone/push Build is passing
118 lines
2.8 KiB
TeX
118 lines
2.8 KiB
TeX
\documentclass[a4paper,10pt]{article}
|
|
\usepackage{myXsim}
|
|
|
|
\title{Polynômes du 2e degré - Cours}
|
|
\tribe{1ST}
|
|
\date{Mars 2023}
|
|
|
|
\pagestyle{empty}
|
|
|
|
\begin{document}
|
|
|
|
\setcounter{section}{1}
|
|
\section{Représentation graphique}
|
|
|
|
|
|
\begin{definition}[Parabole]
|
|
Soit $f(x) = ax^2 + bx + c$ un polynôme du second degré.
|
|
|
|
La représentation graphique de $f$ s'appelle une \textbf{parabole}.
|
|
|
|
\begin{tabular}{cc}
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
|
ymin=-5,ymax=10,ystep=1]
|
|
\tkzAxeXY
|
|
\tkzFct[domain = -5:5, line width=1pt]{x*x-x+1}
|
|
\end{tikzpicture}
|
|
&
|
|
\begin{tikzpicture}[yscale=.4, xscale=0.8]
|
|
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
|
ymin=-5,ymax=10,ystep=1]
|
|
\tkzAxeXY
|
|
\tkzFct[domain = -5:5, line width=1pt]{-x*x-x+3}
|
|
\end{tikzpicture} \\
|
|
Cas où $a > 0$ les branches sont orientées vers le haut. &
|
|
Cas où $a < 0$ les branches sont orientées vers le bas.
|
|
\end{tabular}
|
|
|
|
\end{definition}
|
|
\section{Fonctions particulières}
|
|
|
|
Dans le programme de première ST, seules 3 formes de polynômes du 2nd degré sont à savoir étudier et reconnaître.
|
|
|
|
\begin{center}
|
|
\Large
|
|
\textbf{$x \mapsto ax^2$}
|
|
\end{center}
|
|
|
|
\begin{tabular}{cc}
|
|
\begin{tikzpicture}[yscale=.4, xscale=2]
|
|
\tkzInit[xmin=-2,xmax=2,xstep=1,
|
|
ymin=-5,ymax=10,ystep=1]
|
|
\tkzAxeXY
|
|
\end{tikzpicture}
|
|
&
|
|
\begin{tikzpicture}[yscale=.4, xscale=1.3]
|
|
\tkzInit[xmin=-3,xmax=3,xstep=1,
|
|
ymin=-10,ymax=5,ystep=1]
|
|
\tkzAxeXY
|
|
\end{tikzpicture} \\
|
|
f(x) = 2x^2 &
|
|
f(x) = -3x^2 &
|
|
\end{tabular}
|
|
|
|
\pagebreak
|
|
|
|
\begin{center}
|
|
\Large
|
|
\textbf{$x \mapsto ax^2 + b$}
|
|
\end{center}
|
|
|
|
\begin{tabular}{cc}
|
|
\begin{tikzpicture}[yscale=.4, xscale=2]
|
|
\tkzInit[xmin=-2,xmax=2,xstep=1,
|
|
ymin=-5,ymax=10,ystep=1]
|
|
\tkzAxeXY
|
|
\end{tikzpicture}
|
|
&
|
|
\begin{tikzpicture}[yscale=.4, xscale=1.3]
|
|
\tkzInit[xmin=-3,xmax=3,xstep=1,
|
|
ymin=-10,ymax=5,ystep=1]
|
|
\tkzAxeXY
|
|
\end{tikzpicture} \\
|
|
f(x) = 2x^2 + 2 &
|
|
f(x) = -3x^2 + 4&
|
|
\end{tabular}
|
|
|
|
|
|
\vspace{3cm}
|
|
\begin{center}
|
|
\Large
|
|
\textbf{$x \mapsto a(x - x_1)(x - x_2)$}
|
|
\end{center}
|
|
\begin{tabular}{cc}
|
|
\begin{tikzpicture}[yscale=.4, xscale=2]
|
|
\tkzInit[xmin=-2,xmax=2,xstep=1,
|
|
ymin=-5,ymax=10,ystep=1]
|
|
\tkzAxeXY
|
|
\end{tikzpicture}
|
|
&
|
|
\begin{tikzpicture}[yscale=.4, xscale=1.3]
|
|
\tkzInit[xmin=-3,xmax=3,xstep=1,
|
|
ymin=-10,ymax=5,ystep=1]
|
|
\tkzAxeXY
|
|
\end{tikzpicture} \\
|
|
f(x) = 2(x-2)(x+1) &
|
|
f(x) = -3(x+2)(x-1)&
|
|
\end{tabular}
|
|
|
|
|
|
\afaire{Tracer l'allure des fonctions sur les graphiques}
|
|
\end{document}
|
|
|
|
%%% Local Variables:
|
|
%%% mode: latex
|
|
%%% TeX-master: "master"
|
|
%%% End:
|