110 lines
2.9 KiB
TeX
110 lines
2.9 KiB
TeX
\documentclass[a4paper,12pt]{article}
|
|
\usepackage{myXsim}
|
|
|
|
\author{Benjamin Bertrand}
|
|
\title{Géométrie repérée - Cours}
|
|
\date{2022-01-13}
|
|
|
|
\pagestyle{empty}
|
|
|
|
\begin{document}
|
|
|
|
\section*{Distance entre deux points d'une droite}
|
|
|
|
\begin{center}
|
|
%\includegraphics[scale=0.8]{./fig/eleve_distance}
|
|
\end{center}
|
|
|
|
\begin{propriete}[Valeur absolue]
|
|
La \textbf{valeur absolue d'une nombre $a$}, noté $|a|$ est égale à
|
|
\begin{itemize}
|
|
\item $a$ si $a \geq 0$
|
|
\item $-a$ si $a < 0$
|
|
\end{itemize}
|
|
\end{propriete}
|
|
|
|
\paragraph{Exemples:}
|
|
\[
|
|
|3| = 3 \qquad \qquad |0| = 0 \qquad \qquad |-4| = - (-4) = 4
|
|
\]
|
|
|
|
\begin{propriete}[Distance entre deux points sur une droite]
|
|
$a$ et $b$ deux nombres. Alors la distance entre $a$ et $b$ est égale à $| b - a |$.
|
|
\end{propriete}
|
|
|
|
\paragraph{Exemples:}~
|
|
|
|
\begin{multicols}{2}
|
|
\begin{itemize}
|
|
\item La distance entre $-3$ et $4$ est
|
|
% \[
|
|
% | 4 - (-3) | = | 4 + 3 | = | 7 | = 7
|
|
% \]
|
|
\item La distance entre $-3$ et $-7$ est
|
|
% \[
|
|
% | -7 - (-3) | = | -7 + 3 | = | -4 | = 4
|
|
% \]
|
|
\end{itemize}
|
|
\end{multicols}
|
|
\vspace{1cm}
|
|
|
|
|
|
% \begin{propriete}[Lien avec la racine carré]
|
|
% Soit $x$ un nombre réel, Alors
|
|
% \[
|
|
% \sqrt{x^2} = |x|
|
|
% \]
|
|
% \end{propriete}
|
|
|
|
\section*{Distance entre deux points du plan}
|
|
|
|
|
|
\begin{propriete}[Distance entre deux points]
|
|
\begin{minipage}{0.5\linewidth}
|
|
Soit $M (x_M; y_M)$ et $N (x_N; y_N)$ deux points quelconques. Alors la distance entre $M$ et $N$ se calcule
|
|
\[
|
|
NM = \sqrt{(x_M - x_N)^2 + (y_M - y_N)^2}
|
|
\]
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}{0.4\linewidth}
|
|
\begin{tikzpicture}[scale=1.2]
|
|
\draw[->, very thick] (-1, 0) -- (4, 0);
|
|
\draw[->, very thick] (0, -1) -- (0, 4);
|
|
\draw (0, 0) node [below left] {0};
|
|
|
|
\draw (1.3, 1.4) node {+} node [below left] {$M$};
|
|
\draw (1.3, 0) node {+} node [below] {$x_M$};
|
|
\draw (0, 1.4) node {+} node [left] {$y_M$};
|
|
|
|
\draw[dashed] (1.3, 1.4) --(1.3, 0);
|
|
\draw[dashed] (1.3, 1.4) --(0, 1.4);
|
|
|
|
\draw (3.3, 3.4) node {+} node [above right] {$N$};
|
|
\draw (3.3, 0) node {+} node [below] {$x_N$};
|
|
\draw (0, 3.4) node {+} node [left] {$y_N$};
|
|
|
|
\draw[dashed] (3.3, 3.4) --(3.3, 0);
|
|
\draw[dashed] (3.3, 3.4) --(0, 3.4);
|
|
|
|
\draw (1.3, 1.4) -- (3.3, 3.4);
|
|
|
|
\draw (1.3, 1.4) -- node [midway, below] {$|x_M - x_N|$}
|
|
(3.3, 1.4);
|
|
\draw (3.3, 1.4) -- node [midway, below, sloped] {$|y_M - y_N|$}
|
|
(3.3, 3.4);
|
|
\end{tikzpicture}
|
|
\end{minipage}
|
|
\end{propriete}
|
|
|
|
\paragraph{Exemple:} Distance entre $A (3; 4)$ et $B(-2; 0)$
|
|
|
|
% \[
|
|
% AB = \sqrt{(3 - (-2))^2 + (4 - 0)^2} = \sqrt{ 25 + 16 } = \sqrt{41} \approx 6.4
|
|
% \]
|
|
|
|
\vfill
|
|
|
|
|
|
\end{document}
|