113 lines
2.5 KiB
TeX
113 lines
2.5 KiB
TeX
|
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/tools/style/classDS}
|
||
|
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2013-2014/2013_2014}
|
||
|
|
||
|
% Title Page
|
||
|
\titre{Calcul littéral et statistiques}
|
||
|
% \quatreC \quatreD \troisB \troisPro
|
||
|
\classe{\troisB}
|
||
|
\date{26 septemble 2013}
|
||
|
% DS DSCorr DM DMCorr Corr
|
||
|
\typedoc{DS}
|
||
|
\duree{1 heure}
|
||
|
\sujet{}
|
||
|
|
||
|
|
||
|
\begin{document}
|
||
|
\maketitle
|
||
|
|
||
|
\Calc
|
||
|
Le barème est donné à titre indicatif, il pourra être modifié.
|
||
|
|
||
|
\begin{Exo}[4.5]
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
Développer et réduire les expressions suivantes:
|
||
|
\begin{eqnarray*}
|
||
|
A &=& \frac{ 1 }{ 2 } + 2 \\
|
||
|
P(x) &=& 6 x - 2 \\
|
||
|
Q(x) &=& 4 x + 11\\
|
||
|
R(x) &=& ( 6 x - 2 ) \times ( 4 x + 11 )
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
Solutions:
|
||
|
\begin{eqnarray*}
|
||
|
A & = & \frac{ 1 }{ 2 } + 2 \\
|
||
|
A & = & \frac{ 1 \times 1 }{ 2 \times 1 } + \frac{ 2 \times 2 }{ 1 \times 2 } \\
|
||
|
A & = & \frac{ 1 + 4 }{ 2 } \\
|
||
|
A & = & \frac{ 5 }{ 2 }
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
\begin{eqnarray*}
|
||
|
P(2) & = & 6 \times 2 - 2 \\
|
||
|
P(2) & = & 12 - 2 \\
|
||
|
P(2) & = & 10
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
\begin{eqnarray*}
|
||
|
Q(2) & = & 4 \times 2 + 11 \\
|
||
|
Q(2) & = & 8 + 11 \\
|
||
|
Q(2) & = & 19
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
\begin{eqnarray*}
|
||
|
P(x) + Q(X) & = & 6 x + 4 x - 2 + 11 \\
|
||
|
P(x) + Q(X) & = & ( 6 + 4 ) x + ( -2 ) + 11 \\
|
||
|
P(x) + Q(X) & = & 10 x + 9
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
\begin{eqnarray*}
|
||
|
P(x) + Q(X) & = & 6 x - 2 + 4 x + 11 \\
|
||
|
P(x) + Q(X) & = & 4 x + 6 x + 11 - 2 \\
|
||
|
P(x) + Q(X) & = & ( 4 + 6 ) x + 11 + ( -2 ) \\
|
||
|
P(x) + Q(X) & = & 10 x + 9
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
\begin{eqnarray*}
|
||
|
R(x) & = & ( 6 x - 2 ) \times ( 4 x + 11 ) \\
|
||
|
R(x) & = & 6 \times 4 x^{ 2 } + ( -2 ) \times 4 x + 6 \times 11 x + ( -2 ) \times 11 \\
|
||
|
R(x) & = & 6 \times 4 x^{ 2 } + ( ( -2 ) \times 4 + 6 \times 11 ) x + ( -2 ) \times 11 \\
|
||
|
R(x) & = & 24 x^{ 2 } + ( ( -8 ) + 66 ) x - 22 \\
|
||
|
R(x) & = & 24 x^{ 2 } + 58 x - 22
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
|
||
|
\end{Exo}
|
||
|
|
||
|
\begin{Exo}
|
||
|
|
||
|
Résoudre l'équation suivante
|
||
|
\begin{eqnarray*}
|
||
|
3 x^{ 2 } + x + 10 & = & 0
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
Solution:
|
||
|
|
||
|
On commence par calculer le discriminant
|
||
|
\begin{eqnarray*}
|
||
|
\Delta & = & b^2-4ac
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
\begin{eqnarray*}
|
||
|
\Delta & = & 1^{ 2 } - 4 \times 3 \times 10 \\
|
||
|
\Delta & = & 1 - 12 \times 10 \\
|
||
|
\Delta & = & 1 - 120 \\
|
||
|
\Delta & = & -119
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
|
||
|
Alors $\Delta = -119$
|
||
|
|
||
|
|
||
|
\end{Exo}
|
||
|
|
||
|
|
||
|
\end{document}
|
||
|
|
||
|
%%% Local Variables:
|
||
|
%%% mode: latex
|
||
|
%%% TeX-master: "master"
|
||
|
%%% End:
|
||
|
|
||
|
|