Feat: Start working on snippets
This commit is contained in:
parent
eac1e2efb1
commit
de8d3e574d
BIN
snippets/all_fonctions.pdf
Normal file
BIN
snippets/all_fonctions.pdf
Normal file
Binary file not shown.
BIN
snippets/all_suite.pdf
Normal file
BIN
snippets/all_suite.pdf
Normal file
Binary file not shown.
96
snippets/tpl_fonctions.tex
Normal file
96
snippets/tpl_fonctions.tex
Normal file
@ -0,0 +1,96 @@
|
||||
% vim:ft=tex:
|
||||
%
|
||||
\documentclass[12pt]{article}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage[francais]{babel}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amsfonts}
|
||||
|
||||
|
||||
\title{
|
||||
Snippets pour Opytex \\
|
||||
Fonctions
|
||||
}
|
||||
\author{
|
||||
Benjamin Bertrand
|
||||
}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\section{Calculer des images}
|
||||
\begin{enumerate}
|
||||
%-set f = Expression.random("{a}*x^2 + {b}*x + {c}")
|
||||
\item $\forall x \in \mathbb{R} \qquad f(x) = \Var{f}$
|
||||
|
||||
Solution:
|
||||
\begin{align*}
|
||||
f(0) &= \Var{f(0).explain() | join('=')} \\
|
||||
f(1) &= \Var{f(1).explain() | join('=')} \\
|
||||
f(2) &= \Var{f(2).explain() | join('=')} \\
|
||||
f({10}) &= \Var{f(10).explain() | join('=')} \\
|
||||
f({100}) &= \Var{f(100).explain() | join('=')}
|
||||
\end{align*}
|
||||
\end{enumerate}
|
||||
|
||||
\section{Résolution d'équation du 2nd degré}
|
||||
%- macro solveEquation(P)
|
||||
|
||||
On commence par calculer le discriminant de $P(x) = \Var{P}$.
|
||||
\begin{eqnarray*}
|
||||
\Delta & = & b^2-4ac \\
|
||||
\Var{P.delta.explain()|calculus(name="\\Delta")}
|
||||
\end{eqnarray*}
|
||||
|
||||
\Block{if P.delta > 0}
|
||||
comme $\Delta = \Var{P.delta} > 0$ donc $P$ a deux racines
|
||||
|
||||
\begin{eqnarray*}
|
||||
x_1 & = & \frac{-b - \sqrt{\Delta}}{2a} = \frac{\Var{-P.b} - \sqrt{\Var{P.delta}}}{2 \times \Var{P.a}} = \Var{P.roots[0] } \\
|
||||
x_2 & = & \frac{-b + \sqrt{\Delta}}{2a} = \frac{\Var{-P.b} + \sqrt{\Var{P.delta}}}{2 \times \Var{P.a}} = \Var{P.roots[1] }
|
||||
\end{eqnarray*}
|
||||
|
||||
Les solutions de l'équation $\Var{P} = 0$ sont donc $\mathcal{S} = \left\{ \Var{P.roots[0]}; \Var{P.roots[1]} \right\}$
|
||||
|
||||
\Block{elif P.delta == 0}
|
||||
Comme $\Delta = 0$ donc $P$ a une racine
|
||||
|
||||
\begin{eqnarray*}
|
||||
x_1 = \frac{-b}{2a} = \frac{-\Var{P.b}}{2\times \Var{P.a}} = \Var{P.roots[0]} \\
|
||||
\end{eqnarray*}
|
||||
|
||||
La solution de $\Var{P} = 0$ est donc $\mathcal{S} = \left\{ \Var{P.roots[0]}\right\}$
|
||||
|
||||
\Block{else}
|
||||
Alors $\Delta = \Var{P.delta} < 0$ donc $P$ n'a pas de racine donc l'équation $\Var{P} = 0$ n'a pas de solution.
|
||||
|
||||
\Block{endif}
|
||||
%- endmacro
|
||||
|
||||
\begin{enumerate}
|
||||
%-set P = Expression.random("{a}*x^2 + {b}*x + {c}", ["b**2-4*a*c>0"])
|
||||
\item Étude du polynôme $P$, $\forall x \in \mathbb{R} \quad P(x) = \Var{P}$
|
||||
|
||||
Solution:
|
||||
|
||||
\Var{solveEquation(P)}
|
||||
|
||||
%-set P = Expression.random("{a}*x^2 + {b}*x + {c}", ["b**2-4*a*c==0"])
|
||||
\item Étude du polynôme $P$, $\forall x \in \mathbb{R} \quad P(x) = \Var{P}$
|
||||
|
||||
Solution:
|
||||
|
||||
\Var{solveEquation(P)}
|
||||
|
||||
%-set P = Expression.random("{a}*x^2 + {b}*x + {c}", ["b**2-4*a*c<0"])
|
||||
\item Étude du polynôme $P$, $\forall x \in \mathbb{R} \quad P(x) = \Var{P}$
|
||||
|
||||
Solution:
|
||||
|
||||
\Var{solveEquation(P)}
|
||||
|
||||
\end{enumerate}
|
||||
\end{document}
|
87
snippets/tpl_suite.tex
Normal file
87
snippets/tpl_suite.tex
Normal file
@ -0,0 +1,87 @@
|
||||
% vim:ft=tex:
|
||||
%
|
||||
\documentclass[12pt]{article}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage[francais]{babel}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amsfonts}
|
||||
|
||||
|
||||
\title{
|
||||
Snippets pour Opytex \\
|
||||
Suites
|
||||
}
|
||||
\author{
|
||||
Benjamin Bertrand
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\section{Calculs de termes}
|
||||
\begin{enumerate}
|
||||
\item Calculer les termes $u_0$, $u_1$, $u_2$, $u_{10}$ et $u_{100}$ pour les suites suivantes
|
||||
\begin{enumerate}
|
||||
%-set u = Expression.random("{a}*n+{b}")
|
||||
\item $\forall n \in \mathbb{N} \qquad u_n = \Var{u}$
|
||||
|
||||
Solution:
|
||||
\begin{align*}
|
||||
u_0 &= \Var{u(0).explain() | join('=')} \\
|
||||
u_1 &= \Var{u(1).explain() | join('=')} \\
|
||||
u_2 &= \Var{u(2).explain() | join('=')} \\
|
||||
u_{10} &= \Var{u(10).explain() | join('=')} \\
|
||||
u_{100} &= \Var{u(100).explain() | join('=')}
|
||||
\end{align*}
|
||||
|
||||
%-set v = Expression.random("({a}*n+{b})/{c}", ["c>1"])
|
||||
\item $\forall n \in \mathbb{N} \qquad v_n = \Var{v|replace("frac","dfrac")}$
|
||||
|
||||
Solution:
|
||||
\begin{align*}
|
||||
v_0 &= \Var{v(0).explain() | join('=')} \\
|
||||
v_1 &= \Var{v(1).explain() | join('=')} \\
|
||||
v_2 &= \Var{v(2).explain() | join('=')} \\
|
||||
v_{10} &= \Var{v(10).explain() | join('=')} \\
|
||||
v_{100} &= \Var{v(100).explain() | join('=')}
|
||||
\end{align*}
|
||||
|
||||
%-set v = Expression.random("({a}*n+{b})/{c}", ["c>1"])
|
||||
\item $\forall n \in \mathbb{N} \qquad v_n = \Var{v}$
|
||||
|
||||
Solution:
|
||||
\begin{align*}
|
||||
%- for j in [0, 1, 2, 10, 100]
|
||||
v_{\Var{j}} &= \Var{v(j).explain() | join('=')} \\
|
||||
%- endfor
|
||||
\end{align*}
|
||||
|
||||
%-set f = Expression.random("{a}*x")
|
||||
%-set v0 = randint(0, 10)
|
||||
\item $\forall n \in \mathbb{N} \qquad v_{n+1} = \Var{f("v_n")} \mbox{ et } v_0 = \Var{v0}$
|
||||
|
||||
Solution:
|
||||
\begin{align*}
|
||||
v_0 &= \Var{v0} \\
|
||||
%-set v = f(v0)
|
||||
v_1 &= \Var{v.explain() | join('=')} \\
|
||||
%-set v = f(v)
|
||||
v_2 &= \Var{v.explain() | join('=')} \\
|
||||
\end{align*}
|
||||
Pour le terme 10, il faut calculer tous les autres avant!
|
||||
\begin{align*}
|
||||
%#- Trick to move around scoping rules
|
||||
%#- https://stackoverflow.com/a/49699589
|
||||
%- set v = namespace(val = v)
|
||||
%- for i in range(8)
|
||||
%- set v.val = f(v.val)
|
||||
v_{\Var{i+3}} &= \Var{v.val.explain() | join('=')} \\
|
||||
%- endfor
|
||||
\end{align*}
|
||||
|
||||
\end{enumerate}
|
||||
|
||||
\end{enumerate}
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user