\documentclass[a4paper,10pt]{article} <<<<<<< HEAD \usepackage[utf8x]{inputenc} \usepackage[francais]{babel} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsfonts} % Title Page \title{Jouons avec DS\_géné et pyMath} % \quatreC \quatreD \troisB \troisPro \date{} ======= \RequirePackage[utf8x]{inputenc} \RequirePackage[francais]{babel} \RequirePackage{amssymb} \RequirePackage{amsmath} \RequirePackage{amsfonts} \RequirePackage{subfig} \RequirePackage{graphicx} \RequirePackage{color} % Title Page \title{Calcul littéral et statistiques} \date{\today} >>>>>>> origin/dev \begin{document} \maketitle <<<<<<< HEAD <<<<<<< HEAD \section{Exercice de simplification de fraction} \Block{do RdExpression.set_form("exp")} \Block{set A = RdExpression("{a}/2+2")()} \Block{set B = RdExpression("{a}/2+2")()} Développer et réduire les expressions suivantes: \begin{equation*} A = \Var{ A } \qquad B = \Var{ B } \end{equation*} Solutions: \Var{A.simplify() | calculus} \Var{B.simplify() | calculus(name = "B")} \section{Mettre sous forme canonique} \Block{set P = RdExpression("{a}x^2 + {b}x + {c}")()} Mettre $\Var{P}$ sous la forme canonique. Solution: On simplifie le polynôme: \begin{eqnarray*} \Var{P.simplify() | calculus(name = "P(x) = ")} \end{eqnarray*} Calcul des coordonnées du sommet de la courbe: \begin{eqnarray*} \alpha & = & \frac{-b}{2a} = \\ \beta & = & -\frac{b^2 - 4ac}{4a} = \end{eqnarray*} ======= \Calc Le barème est donné à titre indicatif, il pourra être modifié. \begin{Exo}[4.5] \Block{set A = Expression.random("{a} / 2 + 2")} \Block{set P = Polynom.random(["{b}","{a}"])} \Block{set Q = Polynom.random(["{b+2}","{a}"])} \Block{set R = P('x')*Q('x') } Développer et réduire les expressions suivantes: \begin{eqnarray*} A &=& \Var{ A } \\ P(x) &=& \Var{ P } \\ Q(x) &=& \Var{ Q }\\ R(x) &=& \Var{R} \end{eqnarray*} Solutions: \Var{A.simplify() | calculus} \Var{P(2).simplify() | calculus(name = "P(2)")} \Var{Q(2).simplify() | calculus(name = "Q(2)")} \Var{(P+Q) | calculus(name = "P(x) + Q(X)")} \Var{(P('x')+Q('x')).simplify() | calculus(name = "P(x) + Q(X)")} \Var{R.simplify() | calculus(name = "R(x)")} \end{Exo} \begin{Exo} \Block{set P = Polynom.random(["{a}", "{b}", "{c}"])} ======= \section{Polynômes} \Block{set P = Polynom.random(["{a}", "{b}", "{c}"], ["{b}**2 - 4*{a}*{c} == 0"])} >>>>>>> origin/dev Résoudre l'équation suivante \begin{eqnarray*} \Var{P} & = & 0 \end{eqnarray*} Solution: On commence par calculer le discriminant \Block{set Delta = Expression("{b}^2 - 4*{a}*{c}".format(a = P._coef[2], b = P._coef[1], c = P._coef[0]))} \begin{eqnarray*} \Delta & = & b^2-4ac \\ \Var{Delta.simplify()|calculus(name="\\Delta")} \end{eqnarray*} \Block{set Delta = Delta.simplified()} \Block{if Delta > 0} Alors $\Delta = \Var{Delta} > 0$ donc il y a deux solutions \Block{set x1 = (-P._coef[1] - sqrt(Delta))/(2*P._coef[2])} \Block{set x2 = (-P._coef[1] + sqrt(Delta))/(2*P._coef[2])} \begin{eqnarray*} x_1 & = & \frac{-b - \sqrt{\Delta}}{2a} = \frac{\Var{-P._coef[1]} - \sqrt{\Var{Delta}}}{2 \times \Var{P._coef[2]}} = \Var{x1 | round(2)} \\ x_2 & = & \frac{-b + \sqrt{\Delta}}{2a} = \frac{\Var{-P._coef[1]} + \sqrt{\Var{Delta}}}{2 \times \Var{P._coef[2]}} = \Var{x2 | round(2)} \end{eqnarray*} Les solutions sont donc $\mathcal{S} = \left\{ \Var{x1|round(2)}; \Var{x2|round(2)} \right\}$ \Block{elif Delta == 0} Alors $\Delta = \Var{Delta} = 0$ donc il y a une solution \Block{set x1 = Expression("-{b}/(2*{a})".format(b = P._coef[1], a = P._coef[2]))} \begin{eqnarray*} x_1 = \frac{-b}{2a} = \Var{" = ".join(x1.simplify())} \end{eqnarray*} Les solutions sont donc $\mathcal{S} = \left\{ \Var{x1.simplified()}\right\}$ \Block{else} Alors $\Delta = \Var{Delta} < 0$ donc il n'y a pas de solution. \Block{endif} \bigskip ~\dotfill \bigskip \Block{set P = Polynom.random(["{a}", "{b}", "{c}"])} \Block{set Q = Polynom.random(["{a}", "{b}", "{c}"])} Résoudre l'équation suivante \begin{eqnarray*} \Var{P} & = & \Var{Q} \end{eqnarray*} Solution: On commence par se ramener à une équation de la forme $ax^2+bx+c = 0$. \begin{eqnarray*} \Var{P} = \Var{Q} & \Leftrightarrow & \Var{P} - (\Var{Q}) = 0 \\ \Var{(P - Q)|calculus(name = "", sep = "\\Leftrightarrow", end = "= 0")} \end{eqnarray*} \Block{set R = (P-Q)[-1]} On cherche maintenant à résoudre l'équation $\Var{R} = 0$. <<<<<<< HEAD \end{Exo} >>>>>>> origin/dev ======= On commence par calculer le discriminant \Block{set Delta = Expression("{b}^2 - 4*{a}*{c}".format(a = R._coef[2], b = R._coef[1], c = R._coef[0]))} \begin{eqnarray*} \Delta & = & b^2-4ac \\ \Var{Delta.simplify()|calculus(name="\\Delta")} \end{eqnarray*} \Block{set Delta = Delta.simplified()} \Block{if Delta > 0} Alors $\Delta = \Var{Delta} > 0$ donc il y a deux solutions \Block{set x1 = (-R._coef[1] - sqrt(Delta))/(2*R._coef[2])} \Block{set x2 = (-R._coef[1] + sqrt(Delta))/(2*R._coef[2])} \begin{eqnarray*} x_1 & = & \frac{-b - \sqrt{\Delta}}{2a} = \frac{\Var{-R._coef[1]} - \sqrt{\Var{Delta}}}{2 \times \Var{R._coef[2]}} = \Var{x1 | round(2)} \\ x_2 & = & \frac{-b + \sqrt{\Delta}}{2a} = \frac{\Var{-R._coef[1]} + \sqrt{\Var{Delta}}}{2 \times \Var{R._coef[2]}} = \Var{x2 | round(2)} \end{eqnarray*} Les solutions sont donc $\mathcal{S} = \left\{ \Var{x1|round(2)}; \Var{x2|round(2)} \right\}$ \Block{elif Delta == 0} Alors $\Delta = \Var{Delta} = 0$ donc il y a une solution \Block{set x1 = Expression("-{b}/(2*{a})".format(b = R._coef[1], a = R._coef[2]))} \begin{eqnarray*} x_1 = \frac{-b}{2a} = \Var{" = ".join(x1.simplify())} \end{eqnarray*} Les solutions sont donc $\mathcal{S} = \left\{ \Var{x1.simplified()}\right\}$ \Block{else} Alors $\Delta = \Var{Delta} < 0$ donc il n'y a pas de solution. \Block{endif} >>>>>>> origin/dev \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: "master" %%% End: