209 lines
6.3 KiB
TeX
209 lines
6.3 KiB
TeX
\documentclass[a4paper,12pt]{article}
|
|
\usepackage[utf8x]{inputenc}
|
|
\usepackage[francais]{babel}
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{amssymb}
|
|
\usepackage{amsmath}
|
|
\usepackage{amsfonts}
|
|
\usepackage{subfig}
|
|
\usepackage{graphicx}
|
|
\usepackage{color}
|
|
\usepackage{gensymb}
|
|
\usepackage{ifthen, calc}
|
|
\usepackage{tabularx}
|
|
|
|
\newenvironment{solution}
|
|
{%
|
|
~\\
|
|
\newbox\tempbox%
|
|
\begin{lrbox}{\tempbox}\begin{minipage}{\linewidth}%
|
|
}{%
|
|
\end{minipage}\end{lrbox}%
|
|
\medskip%
|
|
\fbox{\usebox{\tempbox}}%
|
|
\medskip%
|
|
}
|
|
|
|
% Title Page
|
|
\title{DM 1}
|
|
\date{Novembre 2015}
|
|
% DS DSCorr DM DMCorr Corr
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
Sujet numéro 02
|
|
|
|
|
|
\section{Exercice}
|
|
|
|
|
|
Dans un sac, il y a 10 bonbons à la menthe, 15 bonbons à la fraise et 6 au chocolat. On choisit un bonbon au hasard dans ce sac.
|
|
\begin{enumerate}
|
|
\item Calculer la probabilité de tirer un bonbon à la fraise.
|
|
\begin{solution}
|
|
$T($ tirer un bonbon à la fraise $) = \dfrac{10}{31}$
|
|
\end{solution}
|
|
\item Calculer la probabilité de tirer un bonbon qui n'est pas au chocolat.
|
|
\begin{solution}
|
|
|
|
$T($ tirer un bonbon à la fraise ou à la menthe $) = \dfrac{25}{31}$
|
|
\end{solution}
|
|
\item Calculer la probabilité de tirer un bonbon au réglisse.
|
|
\begin{solution}
|
|
$T($ tirer un bonbon au réglisse $) = \dfrac{0}{31} = 0$
|
|
\end{solution}
|
|
\item Dans un autre sac, on place 25 bonbons à la menthe et 34 bonbons à la fraise. Lise préfère les bonbons à la menthe. Dans quel sac doit-elle tirer un bonbon pour avoir le plus de chance d'avoir un bonbon qu'elle préfère?
|
|
\begin{solution}
|
|
|
|
Elle prefera tirer dans le deuxième sac car
|
|
\begin{eqnarray*}
|
|
\frac{10}{31} & < & \frac{25}{34}
|
|
\end{eqnarray*}
|
|
|
|
|
|
\end{solution}
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
\section{Exercice}
|
|
\begin{enumerate}
|
|
\item Compléter les pointillés pour qu'il y est bien égalité.
|
|
\hspace{-1cm}
|
|
\begin{center}
|
|
%
|
|
$\dfrac{6}{2} = \dfrac{\ldots}{10}$
|
|
\hfill
|
|
%
|
|
$\dfrac{5}{6} = \dfrac{\ldots}{60}$
|
|
\hfill
|
|
%
|
|
$\dfrac{\cdots}{45} = \dfrac{3}{5}$
|
|
\hfill
|
|
%
|
|
$\dfrac{3}{6} = \dfrac{18}{\cdots}$
|
|
\end{center}
|
|
|
|
|
|
\item Faire les calculs suivants en détaillant les étapes (penser à simplifier les fractions quand c'est possible).
|
|
\begin{enumerate}
|
|
|
|
\item $A = \frac{ 2 }{ 3 } + \frac{ 7 }{ 3 }$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
A & = & \frac{ 2 }{ 3 } + \frac{ 7 }{ 3 } \\
|
|
A & = & \frac{ 2 + 7 }{ 3 } \\
|
|
A & = & 3
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\item $B = \frac{ 3 }{ 10 } + \frac{ 10 }{ 10 }$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
B & = & \frac{ 3 }{ 10 } + \frac{ 10 }{ 10 } \\
|
|
B & = & \frac{ 3 + 10 }{ 10 } \\
|
|
B & = & \frac{ 13 }{ 10 }
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\item $C = \frac{ -10 }{ 6 } + \frac{ 4 }{ 12 }$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
C & = & \frac{ -10 }{ 6 } + \frac{ 4 }{ 12 } \\
|
|
C & = & \frac{ -10 \times 2 }{ 6 \times 2 } + \frac{ 4 \times 1 }{ 12 \times 1 } \\
|
|
C & = & \frac{ -20 }{ 12 } + \frac{ 4 }{ 12 } \\
|
|
C & = & \frac{ -20 + 4 }{ 12 } \\
|
|
C & = & \frac{ -16 }{ 12 } \\
|
|
C & = & \frac{ -4 \times 4 }{ 3 \times 4 } \\
|
|
C & = & \frac{ -4 }{ 3 }
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\item $D = \frac{ 10 }{ 6 } + \frac{ -8 }{ 42 }$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
D & = & \frac{ 10 }{ 6 } + \frac{ -8 }{ 42 } \\
|
|
D & = & \frac{ 10 \times 7 }{ 6 \times 7 } + \frac{ -8 \times 1 }{ 42 \times 1 } \\
|
|
D & = & \frac{ 70 }{ 42 } + \frac{ -8 }{ 42 } \\
|
|
D & = & \frac{ 70 - 8 }{ 42 } \\
|
|
D & = & \frac{ 62 }{ 42 } \\
|
|
D & = & \frac{ 31 \times 2 }{ 21 \times 2 } \\
|
|
D & = & \frac{ 31 }{ 21 }
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\item $E = \frac{ 6 }{ 9 } \times 4$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
E & = & \frac{ 6 }{ 9 } \times 4 \\
|
|
E & = & \frac{ 6 \times 4 }{ 9 } \\
|
|
E & = & \frac{ 24 }{ 9 } \\
|
|
E & = & \frac{ 8 \times 3 }{ 3 \times 3 } \\
|
|
E & = & \frac{ 8 }{ 3 }
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\item $F = \frac{ 9 }{ 2 } \times \frac{ 9 }{ 5 }$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
F & = & \frac{ 9 }{ 2 } \times \frac{ 9 }{ 5 } \\
|
|
F & = & \frac{ 9 }{ 5 } \times \frac{ 9 }{ 2 } \\
|
|
F & = & \frac{ 9 \times 9 }{ 5 \times 2 } \\
|
|
F & = & \frac{ 81 }{ 10 }
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
\end{enumerate}
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
\section{Exercice}
|
|
|
|
Dans la figure suivante, $(AB)$ et $(CD)$ sont parallèles, $AO = 11$, $OD = 18$, $CD = 6$ et $OB = 14$.
|
|
|
|
|
|
|
|
\includegraphics[scale=0.4]{thales1}
|
|
|
|
Calculer les longueurs $OC$ et $AB$.
|
|
|
|
\begin{solution}
|
|
On sait que
|
|
\begin{itemize}
|
|
\item $(AB)$ et $(CD)$ sont parallèles
|
|
\item $A$,$O$ et $D$ sont alignés
|
|
\item $B$,$O$ et $C$ sont alignés
|
|
\end{itemize}
|
|
Donc d'après le théorème de Thalès
|
|
|
|
\begin{tabular}{|c|*{3}{c|}}
|
|
\hline
|
|
Triangle $OAB$ & $AO = 11$ & $OB = 14$ & $AB $ \\
|
|
\hline
|
|
Triangle $OCD$ & $DO = 18$ & $OC $ & $CD = 6$ \\
|
|
\hline
|
|
\end{tabular}
|
|
est un tableau de proportionnalité.
|
|
|
|
On en déduit que
|
|
\begin{eqnarray*}
|
|
OC & = & \frac{DO \times OB}{AO} = \frac{18 \times 14}{11} = 22.90909090909091
|
|
\end{eqnarray*}
|
|
Et que
|
|
\begin{eqnarray*}
|
|
AB & = & \frac{CD \times AO}{DO} = \frac{6 \times 11}{18} = 3.666666666666667
|
|
\end{eqnarray*}
|
|
|
|
\end{solution}
|
|
|
|
|
|
\end{document}
|
|
|
|
%%% Local Variables:
|
|
%%% mode: latex
|
|
%%% TeX-master: "master"
|
|
%%% End:
|