Mapytex/pymath/polynomDeg2.py

144 lines
3.8 KiB
Python
Raw Normal View History

2015-01-23 16:19:14 +00:00
#!/usr/bin/env python
# encoding: utf-8
from .polynom import Polynom
from .expression import Expression
from .operator import op
from math import sqrt
class Polynom_deg2(Polynom):
""" Degree 2 polynoms
2015-02-25 08:18:18 +00:00
Child of Polynom with some extra tools
2015-01-23 16:19:14 +00:00
"""
def __init__(self, coefs = [0, 0, 1], letter = "x"):
"""@todo: to be defined1. """
2015-02-25 08:18:18 +00:00
if len(coefs) < 3 or len(coefs) > 4:
raise ValueError("Polynom_deg2 have to be degree 2 polynoms, they need 3 coefficients, {} are given".format(len(coefs)))
if coefs[2] == 0:
raise ValueError("Polynom_deg2 have to be degree 2 polynoms, coefficient of x^2 can't be 0")
2015-01-23 16:19:14 +00:00
Polynom.__init__(self, coefs, letter)
@property
def a(self):
return self._coef[2]
@property
def b(self):
return self._coef[1]
@property
def c(self):
return self._coef[0]
@property
def delta(self):
"""Compute the discriminant expression
:returns: discriminant expression
2015-02-25 08:18:18 +00:00
>>> P = Polynom_deg2([1,2,3])
>>> P.delta
< Expression [2, 2, '^', 4, 3, 1, '*', '*', '-']>
>>> for i in P.delta.simplify():
print(i)
2^{ 2 } - 4 \times 3 \times 1
4 - 4 \times 3
4 - 12
-8
>>> P.delta.simplified()
-8
2015-01-23 16:19:14 +00:00
"""
2015-02-25 08:18:18 +00:00
2015-01-23 16:19:14 +00:00
return Expression([self.b, 2, op.pw, 4, self.a, self.c, op.mul, op.mul, op.sub])
def roots(self):
2015-02-25 08:18:18 +00:00
""" Compute roots of the polynom
/!\ Can't manage exact solution because of pymath does not handle sqare root yet
# TODO: Pymath has to know how to compute with sqare root |mar. févr. 24 18:40:04 CET 2015
>>> P = Polynom_deg2([1, 1, 1])
>>> P.roots()
[]
>>> P = Polynom_deg2([1, 2, 1])
>>> P.roots()
[-1.0]
>>> P = Polynom_deg2([-1, 0, 1])
>>> P.roots()
[-1.0, 1.0]
2015-01-23 16:19:14 +00:00
"""
2015-02-25 08:18:18 +00:00
if self.delta.simplified() > 0:
self.roots = [(-self.b - sqrt(self.delta.simplified()))/(2*self.a), (-self.b + sqrt(self.delta.simplified()))/(2*self.a)]
elif self.delta.simplified() == 0:
self.roots = [-self.b /(2*self.a)]
else:
self.roots = []
return self.roots
def tbl_sgn(self):
""" Return the sign line for tkzTabLine
>>> P = Polynom_deg2([2, 5, 2])
>>> P.tbl_sgn()
'\\tkzTabLine{, +, z, -, z , +,}'
>>> P = Polynom_deg2([2, 1, -2])
>>> P.tbl_sgn()
'\\tkzTabLine{, -, z, +, z , -,}'
>>> P = Polynom_deg2([1, 2, 1])
>>> P.tbl_sgn()
'\\tkzTabLine{, +, z, +,}'
>>> P = Polynom_deg2([0, 0, -2])
>>> P.tbl_sgn()
'\\tkzTabLine{, -, z, -,}'
>>> P = Polynom_deg2([1, 0, 1])
>>> P.tbl_sgn()
'\\tkzTabLine{, +,}'
>>> P = Polynom_deg2([-1, 0, -1])
>>> P.tbl_sgn()
'\\tkzTabLine{, -,}'
"""
if self.delta.simplified() > 0:
if self.a > 0:
return "\\tkzTabLine{, +, z, -, z , +,}"
else:
return "\\tkzTabLine{, -, z, +, z , -,}"
elif self.delta.simplified() == 0:
if self.a > 0:
return "\\tkzTabLine{, +, z, +,}"
else:
return "\\tkzTabLine{, -, z, -,}"
else:
if self.a > 0:
return "\\tkzTabLine{, +,}"
else:
return "\\tkzTabLine{, -,}"
2015-01-23 16:19:14 +00:00
if __name__ == '__main__':
2015-02-25 08:18:18 +00:00
# from .render import txt
# with Expression.tmp_render(txt):
# P = Polynom_deg2([2, 3, 4])
# print(P)
2015-01-23 16:19:14 +00:00
2015-02-25 08:18:18 +00:00
# print("Delta")
# for i in P.delta.simplify():
# print(i)
import doctest
doctest.testmod()
2015-01-23 16:19:14 +00:00
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del