2016-02-13 03:49:37 +00:00
|
|
|
POLY_ADD_VALID_RESULTS = [
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 + 2 x - 4',
|
|
|
|
'- x - 2 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - 4 x - 2',
|
|
|
|
'- x - 2 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 + 2 x - 2',
|
|
|
|
'- x - 2 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - 4 x',
|
|
|
|
'- x - 2 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 + 2 x',
|
|
|
|
'- x - 2 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - 4 x + 2',
|
|
|
|
'- x - 2 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 + 2',
|
|
|
|
'- x - 2 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - 4 x + 4',
|
|
|
|
'- x - 2 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 + 4',
|
|
|
|
'- x - 2 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 - 2 x - 4',
|
|
|
|
'-2 + 2 x - 4',
|
|
|
|
'-2 + 4 x - 4',
|
|
|
|
'-2 - 4 x - 2',
|
|
|
|
'-2 - 2',
|
|
|
|
'-2 + 2 x - 2',
|
|
|
|
'-2 + 4 x - 2',
|
|
|
|
'-2 - 4 x',
|
|
|
|
'-2 - 2 x',
|
|
|
|
'-2 + 2 x',
|
|
|
|
'-2 + 4 x',
|
|
|
|
'-2 - 4 x + 2',
|
|
|
|
'-2 - 2 x + 2',
|
|
|
|
'-2 + 2',
|
|
|
|
'-2 + 4 x + 2',
|
|
|
|
'-2 - 4 x + 4',
|
|
|
|
'-2 - 2 x + 4',
|
|
|
|
'-2 + 4',
|
|
|
|
'-2 + 2 x + 4',
|
|
|
|
'x - 2 - 2 x - 4',
|
|
|
|
'x - 2 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 - 4 x - 2',
|
|
|
|
'x - 2 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 + 2 x - 2',
|
|
|
|
'x - 2 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 - 4 x',
|
|
|
|
'x - 2 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 + 2 x',
|
|
|
|
'x - 2 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 - 4 x + 2',
|
|
|
|
'x - 2 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 + 2',
|
|
|
|
'x - 2 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 - 4 x + 4',
|
|
|
|
'x - 2 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 + 4',
|
|
|
|
'x - 2 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - 2 x - 4',
|
|
|
|
'2 x - 2 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 + 2 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - 4 x - 2',
|
|
|
|
'2 x - 2 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 + 2 x - 2',
|
|
|
|
'2 x - 2 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - 4 x',
|
|
|
|
'2 x - 2 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 + 2 x',
|
|
|
|
'2 x - 2 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - 4 x + 2',
|
|
|
|
'2 x - 2 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 + 2',
|
|
|
|
'2 x - 2 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - 4 x + 4',
|
|
|
|
'2 x - 2 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 + 4',
|
|
|
|
'2 x - 2 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x - 1 - 2 x - 4',
|
|
|
|
'-2 x - 1 - 4',
|
|
|
|
'-2 x - 1 + 2 x - 4',
|
|
|
|
'-2 x - 1 + 4 x - 4',
|
|
|
|
'-2 x - 1 - 2',
|
|
|
|
'-2 x - 1 + 2 x - 2',
|
|
|
|
'-2 x - 1 + 4 x - 2',
|
|
|
|
'-2 x - 1 - 4 x',
|
|
|
|
'-2 x - 1 - 2 x',
|
|
|
|
'-2 x - 1 + 2 x',
|
|
|
|
'-2 x - 1 + 4 x',
|
|
|
|
'-2 x - 1 - 4 x + 2',
|
|
|
|
'-2 x - 1 - 2 x + 2',
|
|
|
|
'-2 x - 1 + 2',
|
|
|
|
'-2 x - 1 + 4 x + 2',
|
|
|
|
'-2 x - 1 - 4 x + 4',
|
|
|
|
'-2 x - 1 - 2 x + 4',
|
|
|
|
'-2 x - 1 + 4',
|
|
|
|
'-2 x - 1 + 2 x + 4',
|
|
|
|
'-1 - 2 x - 4',
|
|
|
|
'-1 - 4',
|
|
|
|
'-1 + 2 x - 4',
|
|
|
|
'-1 + 4 x - 4',
|
|
|
|
'-1 - 4 x - 2',
|
|
|
|
'-1 + 2 x - 2',
|
|
|
|
'-1 + 4 x - 2',
|
|
|
|
'-1 - 4 x',
|
|
|
|
'-1 - 2 x',
|
|
|
|
'-1 + 2 x',
|
|
|
|
'-1 + 4 x',
|
|
|
|
'-1 - 4 x + 2',
|
|
|
|
'-1 - 2 x + 2',
|
|
|
|
'-1 + 2',
|
|
|
|
'-1 + 4 x + 2',
|
|
|
|
'-1 - 4 x + 4',
|
|
|
|
'-1 - 2 x + 4',
|
|
|
|
'-1 + 4',
|
|
|
|
'-1 + 2 x + 4',
|
|
|
|
'x - 1 - 2 x - 4',
|
|
|
|
'x - 1 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 + 2 x - 4',
|
|
|
|
'x - 1 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 1 - 4 x - 2',
|
|
|
|
'x - 1 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 1 - 4 x',
|
|
|
|
'x - 1 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 + 2 x',
|
|
|
|
'x - 1 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 1 - 4 x + 2',
|
|
|
|
'x - 1 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 + 2',
|
|
|
|
'x - 1 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 1 - 4 x + 4',
|
|
|
|
'x - 1 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 + 4',
|
|
|
|
'x - 1 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - 2 x - 4',
|
|
|
|
'2 x - 1 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 + 2 x - 4',
|
|
|
|
'2 x - 1 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - 4 x - 2',
|
|
|
|
'2 x - 1 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 + 2 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - 4 x',
|
|
|
|
'2 x - 1 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 + 2 x',
|
|
|
|
'2 x - 1 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - 4 x + 2',
|
|
|
|
'2 x - 1 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 + 2',
|
|
|
|
'2 x - 1 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - 4 x + 4',
|
|
|
|
'2 x - 1 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 + 4',
|
|
|
|
'2 x - 1 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x - 2 x - 4',
|
|
|
|
'-2 x - 4',
|
|
|
|
'-2 x + 2 x - 4',
|
|
|
|
'-2 x + 4 x - 4',
|
|
|
|
'-2 x - 4 x - 2',
|
|
|
|
'-2 x - 2',
|
|
|
|
'-2 x + 2 x - 2',
|
|
|
|
'-2 x + 4 x - 2',
|
|
|
|
'-2 x - 2 x',
|
|
|
|
'-2 x + 2 x',
|
|
|
|
'-2 x + 4 x',
|
|
|
|
'-2 x - 4 x + 2',
|
|
|
|
'-2 x - 2 x + 2',
|
|
|
|
'-2 x + 2',
|
|
|
|
'-2 x + 4 x + 2',
|
|
|
|
'-2 x - 4 x + 4',
|
|
|
|
'-2 x - 2 x + 4',
|
|
|
|
'-2 x + 4',
|
|
|
|
'-2 x + 2 x + 4',
|
|
|
|
'- x - 2 x - 4',
|
|
|
|
'- x - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 x - 4',
|
|
|
|
'- x + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 4 x - 2',
|
|
|
|
'- x - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 x - 2',
|
|
|
|
'- x + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 4 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 x',
|
|
|
|
'- x + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 4 x + 2',
|
|
|
|
'- x - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2',
|
|
|
|
'- x + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 4 x + 4',
|
|
|
|
'- x - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 4',
|
|
|
|
'- x + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 x - 4',
|
|
|
|
'x - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 x - 4',
|
|
|
|
'x + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 4 x - 2',
|
|
|
|
'x - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 x - 2',
|
|
|
|
'x + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 4 x',
|
|
|
|
'x - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 4 x + 2',
|
|
|
|
'x - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2',
|
|
|
|
'x + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 4 x + 4',
|
|
|
|
'x - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 4',
|
|
|
|
'x + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 x - 4',
|
|
|
|
'2 x - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 2 x - 4',
|
|
|
|
'2 x + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 4 x - 2',
|
|
|
|
'2 x - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 2 x - 2',
|
|
|
|
'2 x + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 4 x',
|
|
|
|
'2 x - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 2 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 4 x + 2',
|
|
|
|
'2 x - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 2',
|
|
|
|
'2 x + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 4 x + 4',
|
|
|
|
'2 x - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 4',
|
|
|
|
'2 x + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x + 1 - 2 x - 4',
|
|
|
|
'-2 x + 1 - 4',
|
|
|
|
'-2 x + 1 + 2 x - 4',
|
|
|
|
'-2 x + 1 + 4 x - 4',
|
|
|
|
'-2 x + 1 - 4 x - 2',
|
|
|
|
'-2 x + 1 - 2',
|
|
|
|
'-2 x + 1 + 2 x - 2',
|
|
|
|
'-2 x + 1 + 4 x - 2',
|
|
|
|
'-2 x + 1 - 4 x',
|
|
|
|
'-2 x + 1 - 2 x',
|
|
|
|
'-2 x + 1 + 2 x',
|
|
|
|
'-2 x + 1 + 4 x',
|
|
|
|
'-2 x + 1 - 2 x + 2',
|
|
|
|
'-2 x + 1 + 2',
|
|
|
|
'-2 x + 1 + 4 x + 2',
|
|
|
|
'-2 x + 1 - 4 x + 4',
|
|
|
|
'-2 x + 1 - 2 x + 4',
|
|
|
|
'-2 x + 1 + 4',
|
|
|
|
'-2 x + 1 + 2 x + 4',
|
|
|
|
'- x + 1 - 2 x - 4',
|
|
|
|
'- x + 1 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 + 2 x - 4',
|
|
|
|
'- x + 1 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 1 - 4 x - 2',
|
|
|
|
'- x + 1 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 + 2 x - 2',
|
|
|
|
'- x + 1 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 1 - 4 x',
|
|
|
|
'- x + 1 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 + 2 x',
|
|
|
|
'- x + 1 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 1 - 4 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 + 2',
|
|
|
|
'- x + 1 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 1 - 4 x + 4',
|
|
|
|
'- x + 1 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 + 4',
|
|
|
|
'- x + 1 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - 2 x - 4',
|
|
|
|
'1 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 + 2 x - 4',
|
|
|
|
'1 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - 4 x - 2',
|
|
|
|
'1 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 + 2 x - 2',
|
|
|
|
'1 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - 4 x',
|
|
|
|
'1 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 + 2 x',
|
|
|
|
'1 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - 4 x + 2',
|
|
|
|
'1 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - 4 x + 4',
|
|
|
|
'1 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 + 4',
|
|
|
|
'1 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - 2 x - 4',
|
|
|
|
'2 x + 1 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 + 2 x - 4',
|
|
|
|
'2 x + 1 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - 4 x - 2',
|
|
|
|
'2 x + 1 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 + 2 x - 2',
|
|
|
|
'2 x + 1 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - 4 x',
|
|
|
|
'2 x + 1 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 + 2 x',
|
|
|
|
'2 x + 1 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - 4 x + 2',
|
|
|
|
'2 x + 1 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - 4 x + 4',
|
|
|
|
'2 x + 1 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 + 4',
|
|
|
|
'2 x + 1 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x + 2 - 2 x - 4',
|
|
|
|
'-2 x + 2 - 4',
|
|
|
|
'-2 x + 2 + 2 x - 4',
|
|
|
|
'-2 x + 2 + 4 x - 4',
|
|
|
|
'-2 x + 2 - 4 x - 2',
|
|
|
|
'-2 x + 2 - 2',
|
|
|
|
'-2 x + 2 + 2 x - 2',
|
|
|
|
'-2 x + 2 + 4 x - 2',
|
|
|
|
'-2 x + 2 - 4 x',
|
|
|
|
'-2 x + 2 - 2 x',
|
|
|
|
'-2 x + 2 + 2 x',
|
|
|
|
'-2 x + 2 + 4 x',
|
|
|
|
'-2 x + 2 - 4 x + 2',
|
|
|
|
'-2 x + 2 - 2 x + 2',
|
|
|
|
'-2 x + 2 + 2',
|
|
|
|
'-2 x + 2 + 4 x + 2',
|
|
|
|
'-2 x + 2 - 2 x + 4',
|
|
|
|
'-2 x + 2 + 4',
|
|
|
|
'-2 x + 2 + 2 x + 4',
|
|
|
|
'- x + 2 - 2 x - 4',
|
|
|
|
'- x + 2 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 + 2 x - 4',
|
|
|
|
'- x + 2 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 2 - 4 x - 2',
|
|
|
|
'- x + 2 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 + 2 x - 2',
|
|
|
|
'- x + 2 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 2 - 4 x',
|
|
|
|
'- x + 2 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 + 2 x',
|
|
|
|
'- x + 2 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 2 - 4 x + 2',
|
|
|
|
'- x + 2 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 + 2',
|
|
|
|
'- x + 2 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 2 - 4 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 + 4',
|
|
|
|
'- x + 2 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - 2 x - 4',
|
|
|
|
'2 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 + 2 x - 4',
|
|
|
|
'2 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - 4 x - 2',
|
|
|
|
'2 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 + 2 x - 2',
|
|
|
|
'2 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - 4 x',
|
|
|
|
'2 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 + 2 x',
|
|
|
|
'2 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - 4 x + 2',
|
|
|
|
'2 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 + 2',
|
|
|
|
'2 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - 4 x + 4',
|
|
|
|
'2 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 + 2 x + 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - 2 x - 4',
|
|
|
|
'x + 2 - 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 + 2 x - 4',
|
|
|
|
'x + 2 + 4 x - 4',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - 4 x - 2',
|
|
|
|
'x + 2 - 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 + 2 x - 2',
|
|
|
|
'x + 2 + 4 x - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - 4 x',
|
|
|
|
'x + 2 - 2 x',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 + 2 x',
|
|
|
|
'x + 2 + 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - 4 x + 2',
|
|
|
|
'x + 2 - 2 x + 2',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 + 2',
|
|
|
|
'x + 2 + 4 x + 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - 4 x + 4',
|
|
|
|
'x + 2 - 2 x + 4',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 + 4']
|
|
|
|
POLY_SUB_VALID_RESULTS = [
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 - ( 2 x - 4 )',
|
|
|
|
'- x - 2 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - ( -4 x - 2 )',
|
|
|
|
'- x - 2 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 - ( 2 x - 2 )',
|
|
|
|
'- x - 2 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - ( -4 x )',
|
|
|
|
'- x - 2 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 - 2 x',
|
|
|
|
'- x - 2 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - ( -4 x + 2 )',
|
|
|
|
'- x - 2 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 - 2',
|
|
|
|
'- x - 2 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - 2 - ( -4 x + 4 )',
|
|
|
|
'- x - 2 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 - 4',
|
|
|
|
'- x - 2 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 - ( -2 x - 4 )',
|
|
|
|
'-2 - ( 2 x - 4 )',
|
|
|
|
'-2 - ( 4 x - 4 )',
|
|
|
|
'-2 - ( -4 x - 2 )',
|
|
|
|
'-2 - ( -2 )',
|
|
|
|
'-2 - ( 2 x - 2 )',
|
|
|
|
'-2 - ( 4 x - 2 )',
|
|
|
|
'-2 - ( -4 x )',
|
|
|
|
'-2 - ( -2 x )',
|
|
|
|
'-2 - 2 x',
|
|
|
|
'-2 - 4 x',
|
|
|
|
'-2 - ( -4 x + 2 )',
|
|
|
|
'-2 - ( -2 x + 2 )',
|
|
|
|
'-2 - 2',
|
|
|
|
'-2 - ( 4 x + 2 )',
|
|
|
|
'-2 - ( -4 x + 4 )',
|
|
|
|
'-2 - ( -2 x + 4 )',
|
|
|
|
'-2 - 4',
|
|
|
|
'-2 - ( 2 x + 4 )',
|
|
|
|
'x - 2 - ( -2 x - 4 )',
|
|
|
|
'x - 2 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 - ( -4 x - 2 )',
|
|
|
|
'x - 2 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 - ( 2 x - 2 )',
|
|
|
|
'x - 2 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 - ( -4 x )',
|
|
|
|
'x - 2 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 - 2 x',
|
|
|
|
'x - 2 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 - ( -4 x + 2 )',
|
|
|
|
'x - 2 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 - 2',
|
|
|
|
'x - 2 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 2 - ( -4 x + 4 )',
|
|
|
|
'x - 2 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2 - 4',
|
|
|
|
'x - 2 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - ( -2 x - 4 )',
|
|
|
|
'2 x - 2 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 - ( 2 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - ( -4 x - 2 )',
|
|
|
|
'2 x - 2 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 - ( 2 x - 2 )',
|
|
|
|
'2 x - 2 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - ( -4 x )',
|
|
|
|
'2 x - 2 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 - 2 x',
|
|
|
|
'2 x - 2 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - ( -4 x + 2 )',
|
|
|
|
'2 x - 2 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 - 2',
|
|
|
|
'2 x - 2 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 2 - ( -4 x + 4 )',
|
|
|
|
'2 x - 2 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 - 4',
|
|
|
|
'2 x - 2 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x - 1 - ( -2 x - 4 )',
|
|
|
|
'-2 x - 1 - ( -4 )',
|
|
|
|
'-2 x - 1 - ( 2 x - 4 )',
|
|
|
|
'-2 x - 1 - ( 4 x - 4 )',
|
|
|
|
'-2 x - 1 - ( -2 )',
|
|
|
|
'-2 x - 1 - ( 2 x - 2 )',
|
|
|
|
'-2 x - 1 - ( 4 x - 2 )',
|
|
|
|
'-2 x - 1 - ( -4 x )',
|
|
|
|
'-2 x - 1 - ( -2 x )',
|
|
|
|
'-2 x - 1 - 2 x',
|
|
|
|
'-2 x - 1 - 4 x',
|
|
|
|
'-2 x - 1 - ( -4 x + 2 )',
|
|
|
|
'-2 x - 1 - ( -2 x + 2 )',
|
|
|
|
'-2 x - 1 - 2',
|
|
|
|
'-2 x - 1 - ( 4 x + 2 )',
|
|
|
|
'-2 x - 1 - ( -4 x + 4 )',
|
|
|
|
'-2 x - 1 - ( -2 x + 4 )',
|
|
|
|
'-2 x - 1 - 4',
|
|
|
|
'-2 x - 1 - ( 2 x + 4 )',
|
|
|
|
'-1 - ( -2 x - 4 )',
|
|
|
|
'-1 - ( -4 )',
|
|
|
|
'-1 - ( 2 x - 4 )',
|
|
|
|
'-1 - ( 4 x - 4 )',
|
|
|
|
'-1 - ( -4 x - 2 )',
|
|
|
|
'-1 - ( 2 x - 2 )',
|
|
|
|
'-1 - ( 4 x - 2 )',
|
|
|
|
'-1 - ( -4 x )',
|
|
|
|
'-1 - ( -2 x )',
|
|
|
|
'-1 - 2 x',
|
|
|
|
'-1 - 4 x',
|
|
|
|
'-1 - ( -4 x + 2 )',
|
|
|
|
'-1 - ( -2 x + 2 )',
|
|
|
|
'-1 - 2',
|
|
|
|
'-1 - ( 4 x + 2 )',
|
|
|
|
'-1 - ( -4 x + 4 )',
|
|
|
|
'-1 - ( -2 x + 4 )',
|
|
|
|
'-1 - 4',
|
|
|
|
'-1 - ( 2 x + 4 )',
|
|
|
|
'x - 1 - ( -2 x - 4 )',
|
|
|
|
'x - 1 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 - ( 2 x - 4 )',
|
|
|
|
'x - 1 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 1 - ( -4 x - 2 )',
|
|
|
|
'x - 1 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 1 - ( -4 x )',
|
|
|
|
'x - 1 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 - 2 x',
|
|
|
|
'x - 1 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 1 - ( -4 x + 2 )',
|
|
|
|
'x - 1 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 - 2',
|
|
|
|
'x - 1 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - 1 - ( -4 x + 4 )',
|
|
|
|
'x - 1 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 1 - 4',
|
|
|
|
'x - 1 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - ( -2 x - 4 )',
|
|
|
|
'2 x - 1 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 - ( 2 x - 4 )',
|
|
|
|
'2 x - 1 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - ( -4 x - 2 )',
|
|
|
|
'2 x - 1 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 - ( 2 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - ( -4 x )',
|
|
|
|
'2 x - 1 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 - 2 x',
|
|
|
|
'2 x - 1 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - ( -4 x + 2 )',
|
|
|
|
'2 x - 1 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 - 2',
|
|
|
|
'2 x - 1 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - 1 - ( -4 x + 4 )',
|
|
|
|
'2 x - 1 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 1 - 4',
|
|
|
|
'2 x - 1 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x - ( -2 x - 4 )',
|
|
|
|
'-2 x - ( -4 )',
|
|
|
|
'-2 x - ( 2 x - 4 )',
|
|
|
|
'-2 x - ( 4 x - 4 )',
|
|
|
|
'-2 x - ( -4 x - 2 )',
|
|
|
|
'-2 x - ( -2 )',
|
|
|
|
'-2 x - ( 2 x - 2 )',
|
|
|
|
'-2 x - ( 4 x - 2 )',
|
|
|
|
'-2 x - ( -2 x )',
|
|
|
|
'-2 x - 2 x',
|
|
|
|
'-2 x - 4 x',
|
|
|
|
'-2 x - ( -4 x + 2 )',
|
|
|
|
'-2 x - ( -2 x + 2 )',
|
|
|
|
'-2 x - 2',
|
|
|
|
'-2 x - ( 4 x + 2 )',
|
|
|
|
'-2 x - ( -4 x + 4 )',
|
|
|
|
'-2 x - ( -2 x + 4 )',
|
|
|
|
'-2 x - 4',
|
|
|
|
'-2 x - ( 2 x + 4 )',
|
|
|
|
'- x - ( -2 x - 4 )',
|
|
|
|
'- x - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - ( 2 x - 4 )',
|
|
|
|
'- x - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - ( -4 x - 2 )',
|
|
|
|
'- x - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - ( 2 x - 2 )',
|
|
|
|
'- x - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - ( -4 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2 x',
|
|
|
|
'- x - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - ( -4 x + 2 )',
|
|
|
|
'- x - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 2',
|
|
|
|
'- x - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x - ( -4 x + 4 )',
|
|
|
|
'- x - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x - 4',
|
|
|
|
'- x - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - ( -2 x - 4 )',
|
|
|
|
'x - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - ( 2 x - 4 )',
|
|
|
|
'x - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - ( -4 x - 2 )',
|
|
|
|
'x - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - ( 2 x - 2 )',
|
|
|
|
'x - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - ( -4 x )',
|
|
|
|
'x - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - ( -4 x + 2 )',
|
|
|
|
'x - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 2',
|
|
|
|
'x - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x - ( -4 x + 4 )',
|
|
|
|
'x - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x - 4',
|
|
|
|
'x - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - ( -2 x - 4 )',
|
|
|
|
'2 x - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - ( 2 x - 4 )',
|
|
|
|
'2 x - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - ( -4 x - 2 )',
|
|
|
|
'2 x - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - ( 2 x - 2 )',
|
|
|
|
'2 x - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - ( -4 x )',
|
|
|
|
'2 x - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - ( -4 x + 2 )',
|
|
|
|
'2 x - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 2',
|
|
|
|
'2 x - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x - ( -4 x + 4 )',
|
|
|
|
'2 x - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x - 4',
|
|
|
|
'2 x - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x + 1 - ( -2 x - 4 )',
|
|
|
|
'-2 x + 1 - ( -4 )',
|
|
|
|
'-2 x + 1 - ( 2 x - 4 )',
|
|
|
|
'-2 x + 1 - ( 4 x - 4 )',
|
|
|
|
'-2 x + 1 - ( -4 x - 2 )',
|
|
|
|
'-2 x + 1 - ( -2 )',
|
|
|
|
'-2 x + 1 - ( 2 x - 2 )',
|
|
|
|
'-2 x + 1 - ( 4 x - 2 )',
|
|
|
|
'-2 x + 1 - ( -4 x )',
|
|
|
|
'-2 x + 1 - ( -2 x )',
|
|
|
|
'-2 x + 1 - 2 x',
|
|
|
|
'-2 x + 1 - 4 x',
|
|
|
|
'-2 x + 1 - ( -2 x + 2 )',
|
|
|
|
'-2 x + 1 - 2',
|
|
|
|
'-2 x + 1 - ( 4 x + 2 )',
|
|
|
|
'-2 x + 1 - ( -4 x + 4 )',
|
|
|
|
'-2 x + 1 - ( -2 x + 4 )',
|
|
|
|
'-2 x + 1 - 4',
|
|
|
|
'-2 x + 1 - ( 2 x + 4 )',
|
|
|
|
'- x + 1 - ( -2 x - 4 )',
|
|
|
|
'- x + 1 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 - ( 2 x - 4 )',
|
|
|
|
'- x + 1 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 1 - ( -4 x - 2 )',
|
|
|
|
'- x + 1 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 - ( 2 x - 2 )',
|
|
|
|
'- x + 1 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 1 - ( -4 x )',
|
|
|
|
'- x + 1 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 - 2 x',
|
|
|
|
'- x + 1 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 1 - ( -4 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 - 2',
|
|
|
|
'- x + 1 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 1 - ( -4 x + 4 )',
|
|
|
|
'- x + 1 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 1 - 4',
|
|
|
|
'- x + 1 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - ( -2 x - 4 )',
|
|
|
|
'1 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 - ( 2 x - 4 )',
|
|
|
|
'1 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - ( -4 x - 2 )',
|
|
|
|
'1 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 - ( 2 x - 2 )',
|
|
|
|
'1 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - ( -4 x )',
|
|
|
|
'1 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 - 2 x',
|
|
|
|
'1 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - ( -4 x + 2 )',
|
|
|
|
'1 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 - ( -4 x + 4 )',
|
|
|
|
'1 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 - 4',
|
|
|
|
'1 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - ( -2 x - 4 )',
|
|
|
|
'2 x + 1 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 - ( 2 x - 4 )',
|
|
|
|
'2 x + 1 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - ( -4 x - 2 )',
|
|
|
|
'2 x + 1 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 - ( 2 x - 2 )',
|
|
|
|
'2 x + 1 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - ( -4 x )',
|
|
|
|
'2 x + 1 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 - 2 x',
|
|
|
|
'2 x + 1 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - ( -4 x + 2 )',
|
|
|
|
'2 x + 1 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 - 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x + 1 - ( -4 x + 4 )',
|
|
|
|
'2 x + 1 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x + 1 - 4',
|
|
|
|
'2 x + 1 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x + 2 - ( -2 x - 4 )',
|
|
|
|
'-2 x + 2 - ( -4 )',
|
|
|
|
'-2 x + 2 - ( 2 x - 4 )',
|
|
|
|
'-2 x + 2 - ( 4 x - 4 )',
|
|
|
|
'-2 x + 2 - ( -4 x - 2 )',
|
|
|
|
'-2 x + 2 - ( -2 )',
|
|
|
|
'-2 x + 2 - ( 2 x - 2 )',
|
|
|
|
'-2 x + 2 - ( 4 x - 2 )',
|
|
|
|
'-2 x + 2 - ( -4 x )',
|
|
|
|
'-2 x + 2 - ( -2 x )',
|
|
|
|
'-2 x + 2 - 2 x',
|
|
|
|
'-2 x + 2 - 4 x',
|
|
|
|
'-2 x + 2 - ( -4 x + 2 )',
|
|
|
|
'-2 x + 2 - ( -2 x + 2 )',
|
|
|
|
'-2 x + 2 - 2',
|
|
|
|
'-2 x + 2 - ( 4 x + 2 )',
|
|
|
|
'-2 x + 2 - ( -2 x + 4 )',
|
|
|
|
'-2 x + 2 - 4',
|
|
|
|
'-2 x + 2 - ( 2 x + 4 )',
|
|
|
|
'- x + 2 - ( -2 x - 4 )',
|
|
|
|
'- x + 2 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 - ( 2 x - 4 )',
|
|
|
|
'- x + 2 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 2 - ( -4 x - 2 )',
|
|
|
|
'- x + 2 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 - ( 2 x - 2 )',
|
|
|
|
'- x + 2 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 2 - ( -4 x )',
|
|
|
|
'- x + 2 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 - 2 x',
|
|
|
|
'- x + 2 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 2 - ( -4 x + 2 )',
|
|
|
|
'- x + 2 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 - 2',
|
|
|
|
'- x + 2 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x + 2 - ( -4 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x + 2 - 4',
|
|
|
|
'- x + 2 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - ( -2 x - 4 )',
|
|
|
|
'2 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 - ( 2 x - 4 )',
|
|
|
|
'2 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - ( -4 x - 2 )',
|
|
|
|
'2 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 - ( 2 x - 2 )',
|
|
|
|
'2 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - ( -4 x )',
|
|
|
|
'2 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 - 2 x',
|
|
|
|
'2 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - ( -4 x + 2 )',
|
|
|
|
'2 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 - 2',
|
|
|
|
'2 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 - ( -4 x + 4 )',
|
|
|
|
'2 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 - ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - ( -2 x - 4 )',
|
|
|
|
'x + 2 - ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 - ( 2 x - 4 )',
|
|
|
|
'x + 2 - ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - ( -4 x - 2 )',
|
|
|
|
'x + 2 - ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 - ( 2 x - 2 )',
|
|
|
|
'x + 2 - ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - ( -4 x )',
|
|
|
|
'x + 2 - ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 - 2 x',
|
|
|
|
'x + 2 - 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - ( -4 x + 2 )',
|
|
|
|
'x + 2 - ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 - 2',
|
|
|
|
'x + 2 - ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x + 2 - ( -4 x + 4 )',
|
|
|
|
'x + 2 - ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x + 2 - 4']
|
|
|
|
TEX_POLY_MUL_VALID_RESULTS = [
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) ( 2 x - 4 )',
|
|
|
|
'( - x - 2 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) ( -4 x - 2 )',
|
|
|
|
'( - x - 2 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) ( 2 x - 2 )',
|
|
|
|
'( - x - 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) \\times ( -4 x )',
|
|
|
|
'( - x - 2 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) \\times 2 x',
|
|
|
|
'( - x - 2 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) ( -4 x + 2 )',
|
|
|
|
'( - x - 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) \\times 2',
|
|
|
|
'( - x - 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) ( -4 x + 4 )',
|
|
|
|
'( - x - 2 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) \\times 4',
|
|
|
|
'( - x - 2 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 ( -2 x - 4 )',
|
|
|
|
'-2 ( 2 x - 4 )',
|
|
|
|
'-2 ( 4 x - 4 )',
|
|
|
|
'-2 ( -4 x - 2 )',
|
|
|
|
'-2 \\times ( -2 )',
|
|
|
|
'-2 ( 2 x - 2 )',
|
|
|
|
'-2 ( 4 x - 2 )',
|
|
|
|
'-2 \\times ( -4 x )',
|
|
|
|
'-2 \\times ( -2 x )',
|
|
|
|
'-2 \\times 2 x',
|
|
|
|
'-2 \\times 4 x',
|
|
|
|
'-2 ( -4 x + 2 )',
|
|
|
|
'-2 ( -2 x + 2 )',
|
|
|
|
'-2 \\times 2',
|
|
|
|
'-2 ( 4 x + 2 )',
|
|
|
|
'-2 ( -4 x + 4 )',
|
|
|
|
'-2 ( -2 x + 4 )',
|
|
|
|
'-2 \\times 4',
|
|
|
|
'-2 ( 2 x + 4 )',
|
|
|
|
'( x - 2 ) ( -2 x - 4 )',
|
|
|
|
'( x - 2 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 2 ) ( -4 x - 2 )',
|
|
|
|
'( x - 2 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) ( 2 x - 2 )',
|
|
|
|
'( x - 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 2 ) \\times ( -4 x )',
|
|
|
|
'( x - 2 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) \\times 2 x',
|
|
|
|
'( x - 2 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 2 ) ( -4 x + 2 )',
|
|
|
|
'( x - 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) \\times 2',
|
|
|
|
'( x - 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 2 ) ( -4 x + 4 )',
|
|
|
|
'( x - 2 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) \\times 4',
|
|
|
|
'( x - 2 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) ( -2 x - 4 )',
|
|
|
|
'( 2 x - 2 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) ( 2 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) ( -4 x - 2 )',
|
|
|
|
'( 2 x - 2 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) ( 2 x - 2 )',
|
|
|
|
'( 2 x - 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) \\times ( -4 x )',
|
|
|
|
'( 2 x - 2 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) \\times 2 x',
|
|
|
|
'( 2 x - 2 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) ( -4 x + 2 )',
|
|
|
|
'( 2 x - 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) \\times 2',
|
|
|
|
'( 2 x - 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) ( -4 x + 4 )',
|
|
|
|
'( 2 x - 2 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) \\times 4',
|
|
|
|
'( 2 x - 2 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( -2 x - 1 ) ( -2 x - 4 )',
|
|
|
|
'( -2 x - 1 ) \\times ( -4 )',
|
|
|
|
'( -2 x - 1 ) ( 2 x - 4 )',
|
|
|
|
'( -2 x - 1 ) ( 4 x - 4 )',
|
|
|
|
'( -2 x - 1 ) \\times ( -2 )',
|
|
|
|
'( -2 x - 1 ) ( 2 x - 2 )',
|
|
|
|
'( -2 x - 1 ) ( 4 x - 2 )',
|
|
|
|
'( -2 x - 1 ) \\times ( -4 x )',
|
|
|
|
'( -2 x - 1 ) \\times ( -2 x )',
|
|
|
|
'( -2 x - 1 ) \\times 2 x',
|
|
|
|
'( -2 x - 1 ) \\times 4 x',
|
|
|
|
'( -2 x - 1 ) ( -4 x + 2 )',
|
|
|
|
'( -2 x - 1 ) ( -2 x + 2 )',
|
|
|
|
'( -2 x - 1 ) \\times 2',
|
|
|
|
'( -2 x - 1 ) ( 4 x + 2 )',
|
|
|
|
'( -2 x - 1 ) ( -4 x + 4 )',
|
|
|
|
'( -2 x - 1 ) ( -2 x + 4 )',
|
|
|
|
'( -2 x - 1 ) \\times 4',
|
|
|
|
'( -2 x - 1 ) ( 2 x + 4 )',
|
|
|
|
'-1 ( -2 x - 4 )',
|
|
|
|
'-1 \\times ( -4 )',
|
|
|
|
'-1 ( 2 x - 4 )',
|
|
|
|
'-1 ( 4 x - 4 )',
|
|
|
|
'-1 ( -4 x - 2 )',
|
|
|
|
'-1 ( 2 x - 2 )',
|
|
|
|
'-1 ( 4 x - 2 )',
|
|
|
|
'-1 \\times ( -4 x )',
|
|
|
|
'-1 \\times ( -2 x )',
|
|
|
|
'-1 \\times 2 x',
|
|
|
|
'-1 \\times 4 x',
|
|
|
|
'-1 ( -4 x + 2 )',
|
|
|
|
'-1 ( -2 x + 2 )',
|
|
|
|
'-1 \\times 2',
|
|
|
|
'-1 ( 4 x + 2 )',
|
|
|
|
'-1 ( -4 x + 4 )',
|
|
|
|
'-1 ( -2 x + 4 )',
|
|
|
|
'-1 \\times 4',
|
|
|
|
'-1 ( 2 x + 4 )',
|
|
|
|
'( x - 1 ) ( -2 x - 4 )',
|
|
|
|
'( x - 1 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) ( 2 x - 4 )',
|
|
|
|
'( x - 1 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 1 ) ( -4 x - 2 )',
|
|
|
|
'( x - 1 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 1 ) \\times ( -4 x )',
|
|
|
|
'( x - 1 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) \\times 2 x',
|
|
|
|
'( x - 1 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 1 ) ( -4 x + 2 )',
|
|
|
|
'( x - 1 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) \\times 2',
|
|
|
|
'( x - 1 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 1 ) ( -4 x + 4 )',
|
|
|
|
'( x - 1 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) \\times 4',
|
|
|
|
'( x - 1 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) ( -2 x - 4 )',
|
|
|
|
'( 2 x - 1 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) ( 2 x - 4 )',
|
|
|
|
'( 2 x - 1 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) ( -4 x - 2 )',
|
|
|
|
'( 2 x - 1 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) ( 2 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) \\times ( -4 x )',
|
|
|
|
'( 2 x - 1 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) \\times 2 x',
|
|
|
|
'( 2 x - 1 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) ( -4 x + 2 )',
|
|
|
|
'( 2 x - 1 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) \\times 2',
|
|
|
|
'( 2 x - 1 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) ( -4 x + 4 )',
|
|
|
|
'( 2 x - 1 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) \\times 4',
|
|
|
|
'( 2 x - 1 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x ( -2 x - 4 )',
|
|
|
|
'-2 x \\times ( -4 )',
|
|
|
|
'-2 x ( 2 x - 4 )',
|
|
|
|
'-2 x ( 4 x - 4 )',
|
|
|
|
'-2 x ( -4 x - 2 )',
|
|
|
|
'-2 x \\times ( -2 )',
|
|
|
|
'-2 x ( 2 x - 2 )',
|
|
|
|
'-2 x ( 4 x - 2 )',
|
|
|
|
'-2 x \\times ( -2 x )',
|
|
|
|
'-2 x \\times 2 x',
|
|
|
|
'-2 x \\times 4 x',
|
|
|
|
'-2 x ( -4 x + 2 )',
|
|
|
|
'-2 x ( -2 x + 2 )',
|
|
|
|
'-2 x \\times 2',
|
|
|
|
'-2 x ( 4 x + 2 )',
|
|
|
|
'-2 x ( -4 x + 4 )',
|
|
|
|
'-2 x ( -2 x + 4 )',
|
|
|
|
'-2 x \\times 4',
|
|
|
|
'-2 x ( 2 x + 4 )',
|
|
|
|
'- x ( -2 x - 4 )',
|
|
|
|
'- x \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x ( 2 x - 4 )',
|
|
|
|
'- x ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x ( -4 x - 2 )',
|
|
|
|
'- x \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x ( 2 x - 2 )',
|
|
|
|
'- x ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x \\times ( -4 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x \\times 2 x',
|
|
|
|
'- x \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x ( -4 x + 2 )',
|
|
|
|
'- x ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x \\times 2',
|
|
|
|
'- x ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x ( -4 x + 4 )',
|
|
|
|
'- x ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x \\times 4',
|
|
|
|
'- x ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x ( -2 x - 4 )',
|
|
|
|
'x \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x ( 2 x - 4 )',
|
|
|
|
'x ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x ( -4 x - 2 )',
|
|
|
|
'x \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x ( 2 x - 2 )',
|
|
|
|
'x ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x \\times ( -4 x )',
|
|
|
|
'x \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x ( -4 x + 2 )',
|
|
|
|
'x ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x \\times 2',
|
|
|
|
'x ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x ( -4 x + 4 )',
|
|
|
|
'x ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x \\times 4',
|
|
|
|
'x ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x ( -2 x - 4 )',
|
|
|
|
'2 x \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x ( 2 x - 4 )',
|
|
|
|
'2 x ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x ( -4 x - 2 )',
|
|
|
|
'2 x \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x ( 2 x - 2 )',
|
|
|
|
'2 x ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x \\times ( -4 x )',
|
|
|
|
'2 x \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x \\times 2 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x ( -4 x + 2 )',
|
|
|
|
'2 x ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x \\times 2',
|
|
|
|
'2 x ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x ( -4 x + 4 )',
|
|
|
|
'2 x ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x \\times 4',
|
|
|
|
'2 x ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( -2 x + 1 ) ( -2 x - 4 )',
|
|
|
|
'( -2 x + 1 ) \\times ( -4 )',
|
|
|
|
'( -2 x + 1 ) ( 2 x - 4 )',
|
|
|
|
'( -2 x + 1 ) ( 4 x - 4 )',
|
|
|
|
'( -2 x + 1 ) ( -4 x - 2 )',
|
|
|
|
'( -2 x + 1 ) \\times ( -2 )',
|
|
|
|
'( -2 x + 1 ) ( 2 x - 2 )',
|
|
|
|
'( -2 x + 1 ) ( 4 x - 2 )',
|
|
|
|
'( -2 x + 1 ) \\times ( -4 x )',
|
|
|
|
'( -2 x + 1 ) \\times ( -2 x )',
|
|
|
|
'( -2 x + 1 ) \\times 2 x',
|
|
|
|
'( -2 x + 1 ) \\times 4 x',
|
|
|
|
'( -2 x + 1 ) ( -2 x + 2 )',
|
|
|
|
'( -2 x + 1 ) \\times 2',
|
|
|
|
'( -2 x + 1 ) ( 4 x + 2 )',
|
|
|
|
'( -2 x + 1 ) ( -4 x + 4 )',
|
|
|
|
'( -2 x + 1 ) ( -2 x + 4 )',
|
|
|
|
'( -2 x + 1 ) \\times 4',
|
|
|
|
'( -2 x + 1 ) ( 2 x + 4 )',
|
|
|
|
'( - x + 1 ) ( -2 x - 4 )',
|
|
|
|
'( - x + 1 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) ( 2 x - 4 )',
|
|
|
|
'( - x + 1 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 1 ) ( -4 x - 2 )',
|
|
|
|
'( - x + 1 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) ( 2 x - 2 )',
|
|
|
|
'( - x + 1 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 1 ) \\times ( -4 x )',
|
|
|
|
'( - x + 1 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) \\times 2 x',
|
|
|
|
'( - x + 1 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 1 ) ( -4 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) \\times 2',
|
|
|
|
'( - x + 1 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 1 ) ( -4 x + 4 )',
|
|
|
|
'( - x + 1 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) \\times 4',
|
|
|
|
'( - x + 1 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 ( -2 x - 4 )',
|
|
|
|
'1 \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 ( 2 x - 4 )',
|
|
|
|
'1 ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 ( -4 x - 2 )',
|
|
|
|
'1 \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 ( 2 x - 2 )',
|
|
|
|
'1 ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 \\times ( -4 x )',
|
|
|
|
'1 \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 \\times 2 x',
|
|
|
|
'1 \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 ( -4 x + 2 )',
|
|
|
|
'1 ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 ( -4 x + 4 )',
|
|
|
|
'1 ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 \\times 4',
|
|
|
|
'1 ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) ( -2 x - 4 )',
|
|
|
|
'( 2 x + 1 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) ( 2 x - 4 )',
|
|
|
|
'( 2 x + 1 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) ( -4 x - 2 )',
|
|
|
|
'( 2 x + 1 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) ( 2 x - 2 )',
|
|
|
|
'( 2 x + 1 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) \\times ( -4 x )',
|
|
|
|
'( 2 x + 1 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) \\times 2 x',
|
|
|
|
'( 2 x + 1 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) ( -4 x + 2 )',
|
|
|
|
'( 2 x + 1 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) \\times 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) ( -4 x + 4 )',
|
|
|
|
'( 2 x + 1 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) \\times 4',
|
|
|
|
'( 2 x + 1 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( -2 x + 2 ) ( -2 x - 4 )',
|
|
|
|
'( -2 x + 2 ) \\times ( -4 )',
|
|
|
|
'( -2 x + 2 ) ( 2 x - 4 )',
|
|
|
|
'( -2 x + 2 ) ( 4 x - 4 )',
|
|
|
|
'( -2 x + 2 ) ( -4 x - 2 )',
|
|
|
|
'( -2 x + 2 ) \\times ( -2 )',
|
|
|
|
'( -2 x + 2 ) ( 2 x - 2 )',
|
|
|
|
'( -2 x + 2 ) ( 4 x - 2 )',
|
|
|
|
'( -2 x + 2 ) \\times ( -4 x )',
|
|
|
|
'( -2 x + 2 ) \\times ( -2 x )',
|
|
|
|
'( -2 x + 2 ) \\times 2 x',
|
|
|
|
'( -2 x + 2 ) \\times 4 x',
|
|
|
|
'( -2 x + 2 ) ( -4 x + 2 )',
|
|
|
|
'( -2 x + 2 ) ( -2 x + 2 )',
|
|
|
|
'( -2 x + 2 ) \\times 2',
|
|
|
|
'( -2 x + 2 ) ( 4 x + 2 )',
|
|
|
|
'( -2 x + 2 ) ( -2 x + 4 )',
|
|
|
|
'( -2 x + 2 ) \\times 4',
|
|
|
|
'( -2 x + 2 ) ( 2 x + 4 )',
|
|
|
|
'( - x + 2 ) ( -2 x - 4 )',
|
|
|
|
'( - x + 2 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) ( 2 x - 4 )',
|
|
|
|
'( - x + 2 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 2 ) ( -4 x - 2 )',
|
|
|
|
'( - x + 2 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) ( 2 x - 2 )',
|
|
|
|
'( - x + 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 2 ) \\times ( -4 x )',
|
|
|
|
'( - x + 2 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) \\times 2 x',
|
|
|
|
'( - x + 2 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 2 ) ( -4 x + 2 )',
|
|
|
|
'( - x + 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) \\times 2',
|
|
|
|
'( - x + 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 2 ) ( -4 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) \\times 4',
|
|
|
|
'( - x + 2 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 ( -2 x - 4 )',
|
|
|
|
'2 \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 ( 2 x - 4 )',
|
|
|
|
'2 ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 ( -4 x - 2 )',
|
|
|
|
'2 \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 ( 2 x - 2 )',
|
|
|
|
'2 ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 \\times ( -4 x )',
|
|
|
|
'2 \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 \\times 2 x',
|
|
|
|
'2 \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 ( -4 x + 2 )',
|
|
|
|
'2 ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 \\times 2',
|
|
|
|
'2 ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 ( -4 x + 4 )',
|
|
|
|
'2 ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) ( -2 x - 4 )',
|
|
|
|
'( x + 2 ) \\times ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) ( 2 x - 4 )',
|
|
|
|
'( x + 2 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) ( -4 x - 2 )',
|
|
|
|
'( x + 2 ) \\times ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) ( 2 x - 2 )',
|
|
|
|
'( x + 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) \\times ( -4 x )',
|
|
|
|
'( x + 2 ) \\times ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) \\times 2 x',
|
|
|
|
'( x + 2 ) \\times 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) ( -4 x + 2 )',
|
|
|
|
'( x + 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) \\times 2',
|
|
|
|
'( x + 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) ( -4 x + 4 )',
|
|
|
|
'( x + 2 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) \\times 4']
|
|
|
|
TXT_POLY_MUL_VALID_RESULTS = [
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) ( 2 x - 4 )',
|
|
|
|
'( - x - 2 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) ( -4 x - 2 )',
|
|
|
|
'( - x - 2 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) ( 2 x - 2 )',
|
|
|
|
'( - x - 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) * ( -4 x )',
|
|
|
|
'( - x - 2 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) * 2 x',
|
|
|
|
'( - x - 2 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) ( -4 x + 2 )',
|
|
|
|
'( - x - 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) * 2',
|
|
|
|
'( - x - 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x - 2 ) ( -4 x + 4 )',
|
|
|
|
'( - x - 2 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x - 2 ) * 4',
|
|
|
|
'( - x - 2 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 ( -2 x - 4 )',
|
|
|
|
'-2 ( 2 x - 4 )',
|
|
|
|
'-2 ( 4 x - 4 )',
|
|
|
|
'-2 ( -4 x - 2 )',
|
|
|
|
'-2 * ( -2 )',
|
|
|
|
'-2 ( 2 x - 2 )',
|
|
|
|
'-2 ( 4 x - 2 )',
|
|
|
|
'-2 * ( -4 x )',
|
|
|
|
'-2 * ( -2 x )',
|
|
|
|
'-2 * 2 x',
|
|
|
|
'-2 * 4 x',
|
|
|
|
'-2 ( -4 x + 2 )',
|
|
|
|
'-2 ( -2 x + 2 )',
|
|
|
|
'-2 * 2',
|
|
|
|
'-2 ( 4 x + 2 )',
|
|
|
|
'-2 ( -4 x + 4 )',
|
|
|
|
'-2 ( -2 x + 4 )',
|
|
|
|
'-2 * 4',
|
|
|
|
'-2 ( 2 x + 4 )',
|
|
|
|
'( x - 2 ) ( -2 x - 4 )',
|
|
|
|
'( x - 2 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 2 ) ( -4 x - 2 )',
|
|
|
|
'( x - 2 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) ( 2 x - 2 )',
|
|
|
|
'( x - 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 2 ) * ( -4 x )',
|
|
|
|
'( x - 2 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) * 2 x',
|
|
|
|
'( x - 2 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 2 ) ( -4 x + 2 )',
|
|
|
|
'( x - 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) * 2',
|
|
|
|
'( x - 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 2 ) ( -4 x + 4 )',
|
|
|
|
'( x - 2 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 2 ) * 4',
|
|
|
|
'( x - 2 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) ( -2 x - 4 )',
|
|
|
|
'( 2 x - 2 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) ( 2 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) ( -4 x - 2 )',
|
|
|
|
'( 2 x - 2 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) ( 2 x - 2 )',
|
|
|
|
'( 2 x - 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) * ( -4 x )',
|
|
|
|
'( 2 x - 2 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) * 2 x',
|
|
|
|
'( 2 x - 2 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) ( -4 x + 2 )',
|
|
|
|
'( 2 x - 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) * 2',
|
|
|
|
'( 2 x - 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 2 ) ( -4 x + 4 )',
|
|
|
|
'( 2 x - 2 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 2 ) * 4',
|
|
|
|
'( 2 x - 2 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( -2 x - 1 ) ( -2 x - 4 )',
|
|
|
|
'( -2 x - 1 ) * ( -4 )',
|
|
|
|
'( -2 x - 1 ) ( 2 x - 4 )',
|
|
|
|
'( -2 x - 1 ) ( 4 x - 4 )',
|
|
|
|
'( -2 x - 1 ) * ( -2 )',
|
|
|
|
'( -2 x - 1 ) ( 2 x - 2 )',
|
|
|
|
'( -2 x - 1 ) ( 4 x - 2 )',
|
|
|
|
'( -2 x - 1 ) * ( -4 x )',
|
|
|
|
'( -2 x - 1 ) * ( -2 x )',
|
|
|
|
'( -2 x - 1 ) * 2 x',
|
|
|
|
'( -2 x - 1 ) * 4 x',
|
|
|
|
'( -2 x - 1 ) ( -4 x + 2 )',
|
|
|
|
'( -2 x - 1 ) ( -2 x + 2 )',
|
|
|
|
'( -2 x - 1 ) * 2',
|
|
|
|
'( -2 x - 1 ) ( 4 x + 2 )',
|
|
|
|
'( -2 x - 1 ) ( -4 x + 4 )',
|
|
|
|
'( -2 x - 1 ) ( -2 x + 4 )',
|
|
|
|
'( -2 x - 1 ) * 4',
|
|
|
|
'( -2 x - 1 ) ( 2 x + 4 )',
|
|
|
|
'-1 ( -2 x - 4 )',
|
|
|
|
'-1 * ( -4 )',
|
|
|
|
'-1 ( 2 x - 4 )',
|
|
|
|
'-1 ( 4 x - 4 )',
|
|
|
|
'-1 ( -4 x - 2 )',
|
|
|
|
'-1 ( 2 x - 2 )',
|
|
|
|
'-1 ( 4 x - 2 )',
|
|
|
|
'-1 * ( -4 x )',
|
|
|
|
'-1 * ( -2 x )',
|
|
|
|
'-1 * 2 x',
|
|
|
|
'-1 * 4 x',
|
|
|
|
'-1 ( -4 x + 2 )',
|
|
|
|
'-1 ( -2 x + 2 )',
|
|
|
|
'-1 * 2',
|
|
|
|
'-1 ( 4 x + 2 )',
|
|
|
|
'-1 ( -4 x + 4 )',
|
|
|
|
'-1 ( -2 x + 4 )',
|
|
|
|
'-1 * 4',
|
|
|
|
'-1 ( 2 x + 4 )',
|
|
|
|
'( x - 1 ) ( -2 x - 4 )',
|
|
|
|
'( x - 1 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) ( 2 x - 4 )',
|
|
|
|
'( x - 1 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 1 ) ( -4 x - 2 )',
|
|
|
|
'( x - 1 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 1 ) * ( -4 x )',
|
|
|
|
'( x - 1 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) * 2 x',
|
|
|
|
'( x - 1 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 1 ) ( -4 x + 2 )',
|
|
|
|
'( x - 1 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) * 2',
|
|
|
|
'( x - 1 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x - 1 ) ( -4 x + 4 )',
|
|
|
|
'( x - 1 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x - 1 ) * 4',
|
|
|
|
'( x - 1 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) ( -2 x - 4 )',
|
|
|
|
'( 2 x - 1 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) ( 2 x - 4 )',
|
|
|
|
'( 2 x - 1 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) ( -4 x - 2 )',
|
|
|
|
'( 2 x - 1 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) ( 2 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) * ( -4 x )',
|
|
|
|
'( 2 x - 1 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) * 2 x',
|
|
|
|
'( 2 x - 1 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) ( -4 x + 2 )',
|
|
|
|
'( 2 x - 1 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) * 2',
|
|
|
|
'( 2 x - 1 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x - 1 ) ( -4 x + 4 )',
|
|
|
|
'( 2 x - 1 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x - 1 ) * 4',
|
|
|
|
'( 2 x - 1 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'-2 x ( -2 x - 4 )',
|
|
|
|
'-2 x * ( -4 )',
|
|
|
|
'-2 x ( 2 x - 4 )',
|
|
|
|
'-2 x ( 4 x - 4 )',
|
|
|
|
'-2 x ( -4 x - 2 )',
|
|
|
|
'-2 x * ( -2 )',
|
|
|
|
'-2 x ( 2 x - 2 )',
|
|
|
|
'-2 x ( 4 x - 2 )',
|
|
|
|
'-2 x * ( -2 x )',
|
|
|
|
'-2 x * 2 x',
|
|
|
|
'-2 x * 4 x',
|
|
|
|
'-2 x ( -4 x + 2 )',
|
|
|
|
'-2 x ( -2 x + 2 )',
|
|
|
|
'-2 x * 2',
|
|
|
|
'-2 x ( 4 x + 2 )',
|
|
|
|
'-2 x ( -4 x + 4 )',
|
|
|
|
'-2 x ( -2 x + 4 )',
|
|
|
|
'-2 x * 4',
|
|
|
|
'-2 x ( 2 x + 4 )',
|
|
|
|
'- x ( -2 x - 4 )',
|
|
|
|
'- x * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x ( 2 x - 4 )',
|
|
|
|
'- x ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x ( -4 x - 2 )',
|
|
|
|
'- x * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x ( 2 x - 2 )',
|
|
|
|
'- x ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x * ( -4 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x * 2 x',
|
|
|
|
'- x * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x ( -4 x + 2 )',
|
|
|
|
'- x ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x * 2',
|
|
|
|
'- x ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'- x ( -4 x + 4 )',
|
|
|
|
'- x ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'- x * 4',
|
|
|
|
'- x ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x ( -2 x - 4 )',
|
|
|
|
'x * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x ( 2 x - 4 )',
|
|
|
|
'x ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x ( -4 x - 2 )',
|
|
|
|
'x * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x ( 2 x - 2 )',
|
|
|
|
'x ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x * ( -4 x )',
|
|
|
|
'x * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x ( -4 x + 2 )',
|
|
|
|
'x ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x * 2',
|
|
|
|
'x ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'x ( -4 x + 4 )',
|
|
|
|
'x ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'x * 4',
|
|
|
|
'x ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x ( -2 x - 4 )',
|
|
|
|
'2 x * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x ( 2 x - 4 )',
|
|
|
|
'2 x ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x ( -4 x - 2 )',
|
|
|
|
'2 x * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x ( 2 x - 2 )',
|
|
|
|
'2 x ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x * ( -4 x )',
|
|
|
|
'2 x * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x * 2 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x ( -4 x + 2 )',
|
|
|
|
'2 x ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x * 2',
|
|
|
|
'2 x ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 x ( -4 x + 4 )',
|
|
|
|
'2 x ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 x * 4',
|
|
|
|
'2 x ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( -2 x + 1 ) ( -2 x - 4 )',
|
|
|
|
'( -2 x + 1 ) * ( -4 )',
|
|
|
|
'( -2 x + 1 ) ( 2 x - 4 )',
|
|
|
|
'( -2 x + 1 ) ( 4 x - 4 )',
|
|
|
|
'( -2 x + 1 ) ( -4 x - 2 )',
|
|
|
|
'( -2 x + 1 ) * ( -2 )',
|
|
|
|
'( -2 x + 1 ) ( 2 x - 2 )',
|
|
|
|
'( -2 x + 1 ) ( 4 x - 2 )',
|
|
|
|
'( -2 x + 1 ) * ( -4 x )',
|
|
|
|
'( -2 x + 1 ) * ( -2 x )',
|
|
|
|
'( -2 x + 1 ) * 2 x',
|
|
|
|
'( -2 x + 1 ) * 4 x',
|
|
|
|
'( -2 x + 1 ) ( -2 x + 2 )',
|
|
|
|
'( -2 x + 1 ) * 2',
|
|
|
|
'( -2 x + 1 ) ( 4 x + 2 )',
|
|
|
|
'( -2 x + 1 ) ( -4 x + 4 )',
|
|
|
|
'( -2 x + 1 ) ( -2 x + 4 )',
|
|
|
|
'( -2 x + 1 ) * 4',
|
|
|
|
'( -2 x + 1 ) ( 2 x + 4 )',
|
|
|
|
'( - x + 1 ) ( -2 x - 4 )',
|
|
|
|
'( - x + 1 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) ( 2 x - 4 )',
|
|
|
|
'( - x + 1 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 1 ) ( -4 x - 2 )',
|
|
|
|
'( - x + 1 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) ( 2 x - 2 )',
|
|
|
|
'( - x + 1 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 1 ) * ( -4 x )',
|
|
|
|
'( - x + 1 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) * 2 x',
|
|
|
|
'( - x + 1 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 1 ) ( -4 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) * 2',
|
|
|
|
'( - x + 1 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 1 ) ( -4 x + 4 )',
|
|
|
|
'( - x + 1 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 1 ) * 4',
|
|
|
|
'( - x + 1 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 ( -2 x - 4 )',
|
|
|
|
'1 * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 ( 2 x - 4 )',
|
|
|
|
'1 ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 ( -4 x - 2 )',
|
|
|
|
'1 * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 ( 2 x - 2 )',
|
|
|
|
'1 ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 * ( -4 x )',
|
|
|
|
'1 * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 * 2 x',
|
|
|
|
'1 * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 ( -4 x + 2 )',
|
|
|
|
'1 ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'1 ( -4 x + 4 )',
|
|
|
|
'1 ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'1 * 4',
|
|
|
|
'1 ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) ( -2 x - 4 )',
|
|
|
|
'( 2 x + 1 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) ( 2 x - 4 )',
|
|
|
|
'( 2 x + 1 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) ( -4 x - 2 )',
|
|
|
|
'( 2 x + 1 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) ( 2 x - 2 )',
|
|
|
|
'( 2 x + 1 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) * ( -4 x )',
|
|
|
|
'( 2 x + 1 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) * 2 x',
|
|
|
|
'( 2 x + 1 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) ( -4 x + 2 )',
|
|
|
|
'( 2 x + 1 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) * 2',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( 2 x + 1 ) ( -4 x + 4 )',
|
|
|
|
'( 2 x + 1 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( 2 x + 1 ) * 4',
|
|
|
|
'( 2 x + 1 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( -2 x + 2 ) ( -2 x - 4 )',
|
|
|
|
'( -2 x + 2 ) * ( -4 )',
|
|
|
|
'( -2 x + 2 ) ( 2 x - 4 )',
|
|
|
|
'( -2 x + 2 ) ( 4 x - 4 )',
|
|
|
|
'( -2 x + 2 ) ( -4 x - 2 )',
|
|
|
|
'( -2 x + 2 ) * ( -2 )',
|
|
|
|
'( -2 x + 2 ) ( 2 x - 2 )',
|
|
|
|
'( -2 x + 2 ) ( 4 x - 2 )',
|
|
|
|
'( -2 x + 2 ) * ( -4 x )',
|
|
|
|
'( -2 x + 2 ) * ( -2 x )',
|
|
|
|
'( -2 x + 2 ) * 2 x',
|
|
|
|
'( -2 x + 2 ) * 4 x',
|
|
|
|
'( -2 x + 2 ) ( -4 x + 2 )',
|
|
|
|
'( -2 x + 2 ) ( -2 x + 2 )',
|
|
|
|
'( -2 x + 2 ) * 2',
|
|
|
|
'( -2 x + 2 ) ( 4 x + 2 )',
|
|
|
|
'( -2 x + 2 ) ( -2 x + 4 )',
|
|
|
|
'( -2 x + 2 ) * 4',
|
|
|
|
'( -2 x + 2 ) ( 2 x + 4 )',
|
|
|
|
'( - x + 2 ) ( -2 x - 4 )',
|
|
|
|
'( - x + 2 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) ( 2 x - 4 )',
|
|
|
|
'( - x + 2 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 2 ) ( -4 x - 2 )',
|
|
|
|
'( - x + 2 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) ( 2 x - 2 )',
|
|
|
|
'( - x + 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 2 ) * ( -4 x )',
|
|
|
|
'( - x + 2 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) * 2 x',
|
|
|
|
'( - x + 2 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 2 ) ( -4 x + 2 )',
|
|
|
|
'( - x + 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) * 2',
|
|
|
|
'( - x + 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( - x + 2 ) ( -4 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( - x + 2 ) * 4',
|
|
|
|
'( - x + 2 ) ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 ( -2 x - 4 )',
|
|
|
|
'2 * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 ( 2 x - 4 )',
|
|
|
|
'2 ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 ( -4 x - 2 )',
|
|
|
|
'2 * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 ( 2 x - 2 )',
|
|
|
|
'2 ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 * ( -4 x )',
|
|
|
|
'2 * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 * 2 x',
|
|
|
|
'2 * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 ( -4 x + 2 )',
|
|
|
|
'2 ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 * 2',
|
|
|
|
'2 ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'2 ( -4 x + 4 )',
|
|
|
|
'2 ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'2 ( 2 x + 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) ( -2 x - 4 )',
|
|
|
|
'( x + 2 ) * ( -4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) ( 2 x - 4 )',
|
|
|
|
'( x + 2 ) ( 4 x - 4 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) ( -4 x - 2 )',
|
|
|
|
'( x + 2 ) * ( -2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) ( 2 x - 2 )',
|
|
|
|
'( x + 2 ) ( 4 x - 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) * ( -4 x )',
|
|
|
|
'( x + 2 ) * ( -2 x )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) * 2 x',
|
|
|
|
'( x + 2 ) * 4 x',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) ( -4 x + 2 )',
|
|
|
|
'( x + 2 ) ( -2 x + 2 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) * 2',
|
|
|
|
'( x + 2 ) ( 4 x + 2 )',
|
2016-03-11 15:16:19 +00:00
|
|
|
'( x + 2 ) ( -4 x + 4 )',
|
|
|
|
'( x + 2 ) ( -2 x + 4 )',
|
2016-02-13 03:49:37 +00:00
|
|
|
'( x + 2 ) * 4']
|