|
|
@ -71,7 +71,7 @@ This function ignores tree structure and works with lists |
|
|
|
{'a': -8, 'a*b': -40, 'b': 5, 'c': 4} |
|
|
|
""" |
|
|
|
|
|
|
|
__all__ = ["generator"] |
|
|
|
__all__ = ["list_generator"] |
|
|
|
|
|
|
|
from random import choice |
|
|
|
from functools import reduce |
|
|
@ -256,7 +256,7 @@ def build_variable_scope(rd_variables, rejected, min_max, variables_scope): |
|
|
|
return complete_scope |
|
|
|
|
|
|
|
|
|
|
|
def list_generator(var_list, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}): |
|
|
|
def list_generator(var_list, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}, dictionnary=False): |
|
|
|
""" Generate random computed values from the list |
|
|
|
|
|
|
|
:param rd_variables: list of random variables to generate (can be computed value - "a*b") |
|
|
@ -264,17 +264,25 @@ def list_generator(var_list, conditions=[], rejected=[0], min_max=(-10, 10), var |
|
|
|
:param rejected: Rejected values for the generator (default [0]) |
|
|
|
:param min_max: (min, max) limits in between variables will be generated |
|
|
|
:param variables_scope: rejected and min_max define for individual variables |
|
|
|
:param dictionnary: the return value will be a dictionnary with var_list as keys (default False) |
|
|
|
:return: dictionnary of generated variables |
|
|
|
|
|
|
|
:example: |
|
|
|
>>> values = list_generator(["a", "a*b", "b", "c"]) |
|
|
|
>>> values # doctest: +SKIP |
|
|
|
>>> values["a"] * values["b"] == values["a*b"] |
|
|
|
>>> a, ab, b, c = list_generator(["a", "a*b", "b", "c"]) |
|
|
|
>>> a, ab, b, c # doctest: +SKIP |
|
|
|
(5, -20, -4, -3) |
|
|
|
>>> a * b == ab |
|
|
|
True |
|
|
|
>>> values["a*b"] # doctest: +SKIP |
|
|
|
>>> values["a"] * values["b"] # doctest: +SKIP |
|
|
|
>>> ab # doctest: +SKIP |
|
|
|
-20 |
|
|
|
>>> a, b # doctest: +SKIP |
|
|
|
5, -4 |
|
|
|
>>> list_generator(["a", "a*b", "b", "c"], dictionnary=True) # doctest: +SKIP |
|
|
|
{'a': -3, 'a*b': 18, 'b': -6, 'c': -4} |
|
|
|
""" |
|
|
|
rv = extract_rv(var_list) |
|
|
|
rv_gen = random_generator(rv, conditions, rejected, min_max, variables_scope) |
|
|
|
generated = compute_leafs(var_list, rv_gen) |
|
|
|
return generated |
|
|
|
if dictionnary: |
|
|
|
return generated |
|
|
|
return [generated[v] for v in var_list] |