Feat: RandomTree, rename generate function ...
This commit is contained in:
parent
1672530179
commit
204c7dffd7
@ -1,7 +1,7 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# encoding: utf-8
|
# encoding: utf-8
|
||||||
|
|
||||||
from .calculus import Expression, Integer, Decimal, random_list, render, Polynomial, Fraction
|
from .calculus import Expression, Integer, Decimal, render, Polynomial, Fraction#, random_list,
|
||||||
|
|
||||||
# Expression.set_render('tex')
|
# Expression.set_render('tex')
|
||||||
|
|
||||||
|
@ -12,13 +12,6 @@ Expression
|
|||||||
"""
|
"""
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from ..core import AssocialTree, Tree, compute, typing, TypingError
|
from ..core import AssocialTree, Tree, compute, typing, TypingError
|
||||||
#from ..core.random import (
|
|
||||||
# extract_rdleaf,
|
|
||||||
# extract_rv,
|
|
||||||
# random_generator,
|
|
||||||
# compute_leafs,
|
|
||||||
# replace_rdleaf,
|
|
||||||
#)
|
|
||||||
from ..core.MO import moify
|
from ..core.MO import moify
|
||||||
from .tokens import factory
|
from .tokens import factory
|
||||||
from .renders import render
|
from .renders import render
|
||||||
@ -79,55 +72,6 @@ class Expression(object):
|
|||||||
|
|
||||||
return cls(t)
|
return cls(t)
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def random(
|
|
||||||
cls,
|
|
||||||
template,
|
|
||||||
conditions=[],
|
|
||||||
rejected=[0],
|
|
||||||
min_max=(-10, 10),
|
|
||||||
variables_scope={},
|
|
||||||
shuffle=False,
|
|
||||||
):
|
|
||||||
""" Initiate randomly the expression
|
|
||||||
|
|
||||||
:param template: the template of the expression
|
|
||||||
:param conditions: conditions on randomly generate variable
|
|
||||||
:param rejected: Values to reject for all random variables
|
|
||||||
:param min_max: Min and max value for all random variables
|
|
||||||
:param variables_scope: Dictionnary for each random varaibles to fic rejected and min_max
|
|
||||||
:param shuffle: allowing to shuffle the tree
|
|
||||||
:returns: TODO
|
|
||||||
|
|
||||||
:example:
|
|
||||||
>>> e = Expression.random("{a}/{a*k}")
|
|
||||||
>>> e # doctest: +SKIP
|
|
||||||
<Exp: -3 / -15>
|
|
||||||
>>> e = Expression.random("{a}/{a*k} - 3*{b}", variables_scope={'a':{'min_max':(10, 30)}})
|
|
||||||
>>> e # doctest: +SKIP
|
|
||||||
<Exp: 18 / 108 - 3 * 9>
|
|
||||||
>>> e = Expression.random("{a}*x + {b}*x + 3", ["a>b"], rejected=[0, 1])
|
|
||||||
>>> ee = e.simplify()
|
|
||||||
>>> print(e) # doctest: +SKIP
|
|
||||||
10x - 6x + 3
|
|
||||||
>>> print(ee) # doctest: +SKIP
|
|
||||||
4x + 3
|
|
||||||
|
|
||||||
"""
|
|
||||||
rd_t = Tree.from_str(template, random=True)
|
|
||||||
leafs = extract_rdleaf(rd_t)
|
|
||||||
rd_varia = extract_rv(leafs)
|
|
||||||
generated = random_generator(
|
|
||||||
rd_varia, conditions, rejected, min_max, variables_scope
|
|
||||||
)
|
|
||||||
computed = compute_leafs(leafs, generated)
|
|
||||||
t = replace_rdleaf(rd_t, computed).map_on_leaf(moify)
|
|
||||||
|
|
||||||
if shuffle:
|
|
||||||
raise NotImplemented("Can't suffle expression yet")
|
|
||||||
|
|
||||||
return cls._post_processing(t)
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _post_processing(cls, t):
|
def _post_processing(cls, t):
|
||||||
""" Post process the tree by typing it """
|
""" Post process the tree by typing it """
|
||||||
|
@ -37,254 +37,28 @@ Tree with RdLeaf replaced by generated values
|
|||||||
|
|
||||||
:example:
|
:example:
|
||||||
|
|
||||||
>>> from ...core.tree import Tree
|
>>> from .random_tree import RandomTree
|
||||||
>>> from .leaf import RdLeaf
|
>>> from .leaf import RdLeaf
|
||||||
>>> rd_t = Tree("/", RdLeaf("a"), RdLeaf("a*k"))
|
>>> from .generate import extract_letters, random_generator, eval_words
|
||||||
|
>>> rd_t = RandomTree("/", RdLeaf("a"), RdLeaf("a*k"))
|
||||||
>>> print(rd_t)
|
>>> print(rd_t)
|
||||||
/
|
/
|
||||||
> {a}
|
> {a}
|
||||||
> {a*k}
|
> {a*k}
|
||||||
>>> leafs = extract_rdleaf(rd_t)
|
>>> leafs = rd_t.random_leaf
|
||||||
>>> leafs
|
>>> leafs = ['a', 'a*k']
|
||||||
['a', 'a*k']
|
>>> rd_varia = extract_letters(leafs)
|
||||||
>>> rd_varia = extract_rv(leafs)
|
|
||||||
>>> sorted(list(rd_varia))
|
>>> sorted(list(rd_varia))
|
||||||
['a', 'k']
|
['a', 'k']
|
||||||
>>> generated = random_generator(rd_varia, conditions=['a%2+1'])
|
>>> generated = random_generator(rd_varia, conditions=['a%2+1'])
|
||||||
>>> generated # doctest: +SKIP
|
>>> generated # doctest: +SKIP
|
||||||
{'a': 7, 'k': 4}
|
{'a': 7, 'k': 4}
|
||||||
>>> computed = compute_leafs(leafs, generated)
|
>>> computed = eval_words(leafs, generated)
|
||||||
>>> computed # doctest: +SKIP
|
>>> computed # doctest: +SKIP
|
||||||
{'a': 7, 'a*k': 28}
|
{'a': 7, 'a*k': 28}
|
||||||
>>> replaced = replace_rdleaf(rd_t, computed)
|
>>> replaced = rd_t.eval_random_leaves(computed)
|
||||||
>>> print(replaced) # doctest: +SKIP
|
>>> print(replaced) # doctest: +SKIP
|
||||||
/
|
/
|
||||||
> 7
|
> 7
|
||||||
> 28
|
> 28
|
||||||
|
|
||||||
List generator
|
|
||||||
--------------
|
|
||||||
|
|
||||||
This function ignores tree structure and works with lists
|
|
||||||
|
|
||||||
>>> values = list_generator(["a", "a*b", "b", "c"], conditions=["b%c==1"])
|
|
||||||
>>> values # doctest: +SKIP
|
|
||||||
{'a': -8, 'a*b': -40, 'b': 5, 'c': 4}
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
__all__ = ["list_generator"]
|
|
||||||
|
|
||||||
from random import choice
|
|
||||||
|
|
||||||
|
|
||||||
def extract_rdleaf(tree):
|
|
||||||
""" Extract rdLeaf in a Tree
|
|
||||||
|
|
||||||
:example:
|
|
||||||
>>> from ...core.tree import Tree
|
|
||||||
>>> from .leaf import RdLeaf
|
|
||||||
>>> rd_t = Tree("+", RdLeaf("a"), RdLeaf("a*k"))
|
|
||||||
>>> from .leaf import RdLeaf
|
|
||||||
>>> extract_rdleaf(rd_t)
|
|
||||||
['a', 'a*k']
|
|
||||||
>>> rd_t = Tree("+", RdLeaf("a"), 2)
|
|
||||||
>>> extract_rdleaf(rd_t)
|
|
||||||
['a']
|
|
||||||
"""
|
|
||||||
rd_leafs = []
|
|
||||||
for leaf in tree.get_leafs():
|
|
||||||
try:
|
|
||||||
leaf.rdleaf
|
|
||||||
except AttributeError:
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
rd_leafs.append(leaf.name)
|
|
||||||
return rd_leafs
|
|
||||||
|
|
||||||
|
|
||||||
def extract_rv(leafs):
|
|
||||||
""" Extract the set of random values from the leaf list
|
|
||||||
|
|
||||||
:param leafs: list of leafs
|
|
||||||
:return: set of random values
|
|
||||||
|
|
||||||
:example:
|
|
||||||
>>> leafs = ["a", "a*k"]
|
|
||||||
>>> extract_rv(leafs) == {'a', 'k'}
|
|
||||||
True
|
|
||||||
"""
|
|
||||||
rd_values = set()
|
|
||||||
for leaf in leafs:
|
|
||||||
for c in leaf:
|
|
||||||
if c.isalpha():
|
|
||||||
rd_values.add(c)
|
|
||||||
return rd_values
|
|
||||||
|
|
||||||
|
|
||||||
def compute_leafs(leafs, generated_values):
|
|
||||||
""" Compute leafs from generated random values
|
|
||||||
|
|
||||||
:param generated_values: Dictionnary of name:generated value
|
|
||||||
:param leafs: list of leafs
|
|
||||||
:return: Dictionnary of evaluated leafs from generated values
|
|
||||||
|
|
||||||
:example:
|
|
||||||
>>> leafs = ["a", "a*k"]
|
|
||||||
>>> generated_values = {"a":2, "k":3}
|
|
||||||
>>> compute_leafs(leafs, generated_values)
|
|
||||||
{'a': 2, 'a*k': 6}
|
|
||||||
"""
|
|
||||||
return {leaf: eval(leaf, generated_values) for leaf in leafs}
|
|
||||||
|
|
||||||
|
|
||||||
def replace_rdleaf(tree, computed_leafs):
|
|
||||||
""" Replace RdLeaf by the corresponding computed value
|
|
||||||
|
|
||||||
>>> from ...core.tree import Tree
|
|
||||||
>>> from .leaf import RdLeaf
|
|
||||||
>>> rd_t = Tree("+", RdLeaf("a"), RdLeaf("a*k"))
|
|
||||||
>>> computed_leafs = {'a': 2, 'a*k': 6}
|
|
||||||
>>> print(replace_rdleaf(rd_t, computed_leafs))
|
|
||||||
+
|
|
||||||
> 2
|
|
||||||
> 6
|
|
||||||
"""
|
|
||||||
|
|
||||||
def replace(leaf):
|
|
||||||
try:
|
|
||||||
return leaf.replace(computed_leafs)
|
|
||||||
except AttributeError:
|
|
||||||
return leaf
|
|
||||||
|
|
||||||
return tree.map_on_leaf(replace)
|
|
||||||
|
|
||||||
|
|
||||||
def random_generator(
|
|
||||||
rd_variables, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}
|
|
||||||
):
|
|
||||||
""" Generate random variables
|
|
||||||
|
|
||||||
:param rd_variables: list of random variables to generate
|
|
||||||
:param conditions: condition over variables
|
|
||||||
:param rejected: Rejected values for the generator (default [0])
|
|
||||||
:param min_max: (min, max) limits in between variables will be generated
|
|
||||||
:param variables_scope: rejected and min_max define for individual variables
|
|
||||||
:return: dictionnary of generated variables
|
|
||||||
|
|
||||||
:example:
|
|
||||||
>>> gene = random_generator(["a", "b"],
|
|
||||||
... ["a > 0"],
|
|
||||||
... [0], (-10, 10),
|
|
||||||
... {"a": {"rejected": [0, 1]},
|
|
||||||
... "b": {"min_max": (-5, 0)}})
|
|
||||||
>>> gene["a"] > 0
|
|
||||||
True
|
|
||||||
>>> gene["a"] != 0
|
|
||||||
True
|
|
||||||
>>> gene["b"] < 0
|
|
||||||
True
|
|
||||||
>>> gene = random_generator(["a", "b"],
|
|
||||||
... ["a % b == 0"],
|
|
||||||
... [0, 1], (-10, 10))
|
|
||||||
>>> gene["a"] not in [0, 1]
|
|
||||||
True
|
|
||||||
>>> gene["b"] in list(range(-10, 11))
|
|
||||||
True
|
|
||||||
>>> gene["a"] % gene["b"]
|
|
||||||
0
|
|
||||||
"""
|
|
||||||
complete_scope = build_variable_scope(
|
|
||||||
rd_variables, rejected, min_max, variables_scope
|
|
||||||
)
|
|
||||||
choices_list = {
|
|
||||||
v: list(
|
|
||||||
set(
|
|
||||||
range(
|
|
||||||
complete_scope[v]["min_max"][0], complete_scope[v]["min_max"][1] + 1
|
|
||||||
)
|
|
||||||
).difference(complete_scope[v]["rejected"])
|
|
||||||
)
|
|
||||||
for v in rd_variables
|
|
||||||
}
|
|
||||||
|
|
||||||
# quantity_choices = reduce(lambda x,y : x*y,
|
|
||||||
# [len(choices_list[v]) for v in choices_list])
|
|
||||||
# TODO: améliorer la méthode de rejet avec un cache |dim. mai 12 17:04:11 CEST 2019
|
|
||||||
|
|
||||||
generate_variable = {v: choice(choices_list[v]) for v in rd_variables}
|
|
||||||
|
|
||||||
while not all([eval(c, __builtins__, generate_variable) for c in conditions]):
|
|
||||||
generate_variable = {v: choice(choices_list[v]) for v in rd_variables}
|
|
||||||
|
|
||||||
return generate_variable
|
|
||||||
|
|
||||||
|
|
||||||
def build_variable_scope(rd_variables, rejected, min_max, variables_scope):
|
|
||||||
""" Build variables scope from incomplete one
|
|
||||||
|
|
||||||
:param rd_variables: list of random variables to generate
|
|
||||||
:param rejected: Rejected values for the generator
|
|
||||||
:param min_max: (min, max) limits in between variables will be generated
|
|
||||||
:param variables_scope: rejected and min_max define for individual variables
|
|
||||||
:return: complete variable scope
|
|
||||||
|
|
||||||
:example:
|
|
||||||
>>> completed = build_variable_scope(["a", "b", "c", "d"], [0], (-10, 10),
|
|
||||||
... {"a": {"rejected": [0, 1]},
|
|
||||||
... "b": {"min_max": (-5, 0)},
|
|
||||||
... "c": {"rejected": [2], "min_max": (0, 5)}})
|
|
||||||
>>> complete = {'a': {'rejected': [0, 1], 'min_max': (-10, 10)},
|
|
||||||
... 'b': {'rejected': [0], 'min_max': (-5, 0)},
|
|
||||||
... 'c': {'rejected': [2], 'min_max': (0, 5)},
|
|
||||||
... 'd': {'rejected': [0], 'min_max': (-10, 10)}}
|
|
||||||
>>> completed == complete
|
|
||||||
True
|
|
||||||
"""
|
|
||||||
complete_scope = variables_scope.copy()
|
|
||||||
for v in rd_variables:
|
|
||||||
try:
|
|
||||||
complete_scope[v]
|
|
||||||
except KeyError:
|
|
||||||
complete_scope[v] = {"rejected": rejected, "min_max": min_max}
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
complete_scope[v]["rejected"]
|
|
||||||
except KeyError:
|
|
||||||
complete_scope[v]["rejected"] = rejected
|
|
||||||
try:
|
|
||||||
complete_scope[v]["min_max"]
|
|
||||||
except KeyError:
|
|
||||||
complete_scope[v]["min_max"] = min_max
|
|
||||||
return complete_scope
|
|
||||||
|
|
||||||
|
|
||||||
def list_generator(var_list, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}, dictionnary=False):
|
|
||||||
""" Generate random computed values from the list
|
|
||||||
|
|
||||||
:param rd_variables: list of random variables to generate (can be computed value - "a*b")
|
|
||||||
:param conditions: condition over variables
|
|
||||||
:param rejected: Rejected values for the generator (default [0])
|
|
||||||
:param min_max: (min, max) limits in between variables will be generated
|
|
||||||
:param variables_scope: rejected and min_max define for individual variables
|
|
||||||
:param dictionnary: the return value will be a dictionnary with var_list as keys (default False)
|
|
||||||
:return: dictionnary of generated variables
|
|
||||||
|
|
||||||
:example:
|
|
||||||
>>> a, ab, b, c = list_generator(["a", "a*b", "b", "c"])
|
|
||||||
>>> a, ab, b, c # doctest: +SKIP
|
|
||||||
(5, -20, -4, -3)
|
|
||||||
>>> a * b == ab
|
|
||||||
True
|
|
||||||
>>> ab # doctest: +SKIP
|
|
||||||
-20
|
|
||||||
>>> a, b # doctest: +SKIP
|
|
||||||
5, -4
|
|
||||||
>>> list_generator(["a", "a*b", "b", "c"], dictionnary=True) # doctest: +SKIP
|
|
||||||
{'a': -3, 'a*b': 18, 'b': -6, 'c': -4}
|
|
||||||
"""
|
|
||||||
rv = extract_rv(var_list)
|
|
||||||
rv_gen = random_generator(rv, conditions, rejected, min_max, variables_scope)
|
|
||||||
generated = compute_leafs(var_list, rv_gen)
|
|
||||||
if dictionnary:
|
|
||||||
return generated
|
|
||||||
return [generated[v] for v in var_list]
|
|
||||||
|
146
mapytex/calculus/random/core/generate.py
Normal file
146
mapytex/calculus/random/core/generate.py
Normal file
@ -0,0 +1,146 @@
|
|||||||
|
#! /usr/bin/env python
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# vim:fenc=utf-8
|
||||||
|
#
|
||||||
|
# Copyright © 2017 lafrite <lafrite@Poivre>
|
||||||
|
#
|
||||||
|
# Distributed under terms of the MIT license.
|
||||||
|
|
||||||
|
|
||||||
|
from random import choice
|
||||||
|
|
||||||
|
|
||||||
|
def extract_letters(words:list[str])->set[str]:
|
||||||
|
""" Extracts unique letters from a list of words
|
||||||
|
|
||||||
|
:param words: list of leafs
|
||||||
|
:return: set of letters
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> leafs = ["a", "a*k"]
|
||||||
|
>>> extract_letters(leafs) == {'a', 'k'}
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
letters = set()
|
||||||
|
for word in words:
|
||||||
|
for c in word:
|
||||||
|
if c.isalpha():
|
||||||
|
letters.add(c)
|
||||||
|
return letters
|
||||||
|
|
||||||
|
|
||||||
|
def eval_words(words:list[str], values:dict[str,int]) -> dict[str, int]:
|
||||||
|
""" Evaluate words replacing letters with values
|
||||||
|
|
||||||
|
:param words: list of words
|
||||||
|
:param values: Dictionary of letters:value
|
||||||
|
:return: Dictionary of evaluated words from generated values
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> leafs = ["a", "a*k"]
|
||||||
|
>>> generated_values = {"a":2, "k":3}
|
||||||
|
>>> eval_words(leafs, generated_values)
|
||||||
|
{'a': 2, 'a*k': 6}
|
||||||
|
"""
|
||||||
|
return {word: eval(word, values) for word in words}
|
||||||
|
|
||||||
|
|
||||||
|
def build_variable_scope(rd_variables, rejected, min_max, variables_scope):
|
||||||
|
""" Build variables scope from incomplete one
|
||||||
|
|
||||||
|
:param rd_variables: list of random variables to generate
|
||||||
|
:param rejected: Rejected values for the generator
|
||||||
|
:param min_max: (min, max) limits in between variables will be generated
|
||||||
|
:param variables_scope: rejected and min_max define for individual variables
|
||||||
|
:return: complete variable scope
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> completed = build_variable_scope(["a", "b", "c", "d"], [0], (-10, 10),
|
||||||
|
... {"a": {"rejected": [0, 1]},
|
||||||
|
... "b": {"min_max": (-5, 0)},
|
||||||
|
... "c": {"rejected": [2], "min_max": (0, 5)}})
|
||||||
|
>>> complete = {'a': {'rejected': [0, 1], 'min_max': (-10, 10)},
|
||||||
|
... 'b': {'rejected': [0], 'min_max': (-5, 0)},
|
||||||
|
... 'c': {'rejected': [2], 'min_max': (0, 5)},
|
||||||
|
... 'd': {'rejected': [0], 'min_max': (-10, 10)}}
|
||||||
|
>>> completed == complete
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
complete_scope = variables_scope.copy()
|
||||||
|
for v in rd_variables:
|
||||||
|
try:
|
||||||
|
complete_scope[v]
|
||||||
|
except KeyError:
|
||||||
|
complete_scope[v] = {"rejected": rejected, "min_max": min_max}
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
complete_scope[v]["rejected"]
|
||||||
|
except KeyError:
|
||||||
|
complete_scope[v]["rejected"] = rejected
|
||||||
|
try:
|
||||||
|
complete_scope[v]["min_max"]
|
||||||
|
except KeyError:
|
||||||
|
complete_scope[v]["min_max"] = min_max
|
||||||
|
return complete_scope
|
||||||
|
|
||||||
|
|
||||||
|
def random_generator(
|
||||||
|
rd_variables, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}
|
||||||
|
):
|
||||||
|
""" Generate random variables
|
||||||
|
|
||||||
|
:param rd_variables: list of random variables to generate
|
||||||
|
:param conditions: condition over variables
|
||||||
|
:param rejected: Rejected values for the generator (default [0])
|
||||||
|
:param min_max: (min, max) limits in between variables will be generated
|
||||||
|
:param variables_scope: rejected and min_max define for individual variables
|
||||||
|
:return: dictionnary of generated variables
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> gene = random_generator(["a", "b"],
|
||||||
|
... ["a > 0"],
|
||||||
|
... [0], (-10, 10),
|
||||||
|
... {"a": {"rejected": [0, 1]},
|
||||||
|
... "b": {"min_max": (-5, 0)}})
|
||||||
|
>>> gene["a"] > 0
|
||||||
|
True
|
||||||
|
>>> gene["a"] != 0
|
||||||
|
True
|
||||||
|
>>> gene["b"] < 0
|
||||||
|
True
|
||||||
|
>>> gene = random_generator(["a", "b"],
|
||||||
|
... ["a % b == 0"],
|
||||||
|
... [0, 1], (-10, 10))
|
||||||
|
>>> gene["a"] not in [0, 1]
|
||||||
|
True
|
||||||
|
>>> gene["b"] in list(range(-10, 11))
|
||||||
|
True
|
||||||
|
>>> gene["a"] % gene["b"]
|
||||||
|
0
|
||||||
|
"""
|
||||||
|
complete_scope = build_variable_scope(
|
||||||
|
rd_variables, rejected, min_max, variables_scope
|
||||||
|
)
|
||||||
|
choices_list = {
|
||||||
|
v: list(
|
||||||
|
set(
|
||||||
|
range(
|
||||||
|
complete_scope[v]["min_max"][0], complete_scope[v]["min_max"][1] + 1
|
||||||
|
)
|
||||||
|
).difference(complete_scope[v]["rejected"])
|
||||||
|
)
|
||||||
|
for v in rd_variables
|
||||||
|
}
|
||||||
|
|
||||||
|
# quantity_choices = reduce(lambda x,y : x*y,
|
||||||
|
# [len(choices_list[v]) for v in choices_list])
|
||||||
|
# TODO: améliorer la méthode de rejet avec un cache |dim. mai 12 17:04:11 CEST 2019
|
||||||
|
|
||||||
|
generate_variable = {v: choice(choices_list[v]) for v in rd_variables}
|
||||||
|
|
||||||
|
while not all([eval(c, __builtins__, generate_variable) for c in conditions]):
|
||||||
|
generate_variable = {v: choice(choices_list[v]) for v in rd_variables}
|
||||||
|
|
||||||
|
return generate_variable
|
||||||
|
|
||||||
|
|
104
mapytex/calculus/random/core/random_tree.py
Normal file
104
mapytex/calculus/random/core/random_tree.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
from ...core.tree import MutableTree, Tree
|
||||||
|
from .generate import extract_letters, random_generator
|
||||||
|
from .str2 import rdstr2
|
||||||
|
|
||||||
|
class RandomTree(MutableTree):
|
||||||
|
""" MutableTree that accept {a} syntax for random generation
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> t = RandomTree()
|
||||||
|
>>> type(t)
|
||||||
|
<class 'mapytex.calculus.random.core.random_tree.RandomTree'>
|
||||||
|
"""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_str(cls, expression):
|
||||||
|
""" Initiate a random tree from a string that need to be parsed
|
||||||
|
|
||||||
|
:exemple:
|
||||||
|
>>> t = RandomTree.from_str("{b}*x+{c}")
|
||||||
|
>>> print(t)
|
||||||
|
+
|
||||||
|
> *
|
||||||
|
| > {b}
|
||||||
|
| > x
|
||||||
|
> {c}
|
||||||
|
>>> t = RandomTree.from_str("{a}*({b}*x+{c})")
|
||||||
|
>>> print(t)
|
||||||
|
*
|
||||||
|
> {a}
|
||||||
|
> +
|
||||||
|
| > *
|
||||||
|
| | > {b}
|
||||||
|
| | > x
|
||||||
|
| > {c}
|
||||||
|
"""
|
||||||
|
str_2_mut_tree = rdstr2(cls.sink)
|
||||||
|
return str_2_mut_tree(expression)
|
||||||
|
|
||||||
|
def generate(self, conditions:list[str]=[], rejected:list[int]=[0, 1], min_max:tuple[int]=(-10, 10),scopes:dict={}) -> Tree:
|
||||||
|
""" Generate a random version of self """
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
@property
|
||||||
|
def random_leaf(self) -> list[str]:
|
||||||
|
""" Get list of random leaves
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> from .leaf import RdLeaf
|
||||||
|
>>> random_tree = RandomTree("+", RdLeaf("a"), RdLeaf("a*k"))
|
||||||
|
>>> random_tree.random_leaf
|
||||||
|
['a', 'a*k']
|
||||||
|
>>> random_tree = RandomTree("+", RdLeaf("a"), 2)
|
||||||
|
>>> random_tree.random_leaf
|
||||||
|
['a']
|
||||||
|
"""
|
||||||
|
rd_leafs = []
|
||||||
|
for leaf in self.get_leafs():
|
||||||
|
try:
|
||||||
|
leaf.rdleaf
|
||||||
|
except AttributeError:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
rd_leafs.append(leaf.name)
|
||||||
|
return rd_leafs
|
||||||
|
|
||||||
|
|
||||||
|
@property
|
||||||
|
def random_value(self) -> set[str]:
|
||||||
|
""" Get set of random values to generate
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> from .leaf import RdLeaf
|
||||||
|
>>> random_tree = RandomTree("+", RdLeaf("a"), RdLeaf("a*k"))
|
||||||
|
>>> random_tree.random_value == {'a', 'k'}
|
||||||
|
True
|
||||||
|
>>> random_tree = RandomTree("+", RdLeaf("a"), 2)
|
||||||
|
>>> random_tree.random_value
|
||||||
|
{'a'}
|
||||||
|
"""
|
||||||
|
return extract_letters(self.random_leaf)
|
||||||
|
|
||||||
|
|
||||||
|
def eval_random_leaves(self, leaves_value:dict[str, int]):
|
||||||
|
""" Given random leaves value get the tree
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> from .leaf import RdLeaf
|
||||||
|
>>> rd_t = RandomTree("+", RdLeaf("a"), RdLeaf("a*k"))
|
||||||
|
>>> leaves_values = {'a': 2, 'a*k': 6}
|
||||||
|
>>> t = rd_t.eval_random_leaves(leaves_values)
|
||||||
|
>>> type(t)
|
||||||
|
<class 'mapytex.calculus.core.tree.Tree'>
|
||||||
|
>>> print(t)
|
||||||
|
+
|
||||||
|
> 2
|
||||||
|
> 6
|
||||||
|
"""
|
||||||
|
def replace(leaf):
|
||||||
|
try:
|
||||||
|
return leaf.replace(leaves_value)
|
||||||
|
except AttributeError:
|
||||||
|
return leaf
|
||||||
|
return self.map_on_leaf(replace)
|
@ -4,7 +4,6 @@ from functools import partial
|
|||||||
from ...core.str2 import concurent_broadcast, lookforNumbers, pparser, missing_times, lookfor
|
from ...core.str2 import concurent_broadcast, lookforNumbers, pparser, missing_times, lookfor
|
||||||
from ...core.coroutine import STOOOP
|
from ...core.coroutine import STOOOP
|
||||||
from ...core.MO import moify_cor
|
from ...core.MO import moify_cor
|
||||||
from ...core.tree import MutableTree
|
|
||||||
from .leaf import look_for_rdleaf
|
from .leaf import look_for_rdleaf
|
||||||
|
|
||||||
def rdstr2(sink):
|
def rdstr2(sink):
|
||||||
@ -35,31 +34,3 @@ def rdstr2(sink):
|
|||||||
|
|
||||||
return pipeline
|
return pipeline
|
||||||
|
|
||||||
class RandomTree(MutableTree):
|
|
||||||
""" MutableTree that accept {a} syntax for random generation """
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_str(cls, expression):
|
|
||||||
""" Initiate a random tree from a string that need to be parsed
|
|
||||||
|
|
||||||
:exemple:
|
|
||||||
>>> t = RandomTree.from_str("{b}*x+{c}")
|
|
||||||
>>> print(t)
|
|
||||||
+
|
|
||||||
> *
|
|
||||||
| > {b}
|
|
||||||
| > x
|
|
||||||
> {c}
|
|
||||||
>>> t = RandomTree.from_str("{a}*({b}*x+{c})")
|
|
||||||
>>> print(t)
|
|
||||||
*
|
|
||||||
> {a}
|
|
||||||
> +
|
|
||||||
| > *
|
|
||||||
| | > {b}
|
|
||||||
| | > x
|
|
||||||
| > {c}
|
|
||||||
"""
|
|
||||||
str_2_mut_tree = rdstr2(cls.sink)
|
|
||||||
return str_2_mut_tree(expression)
|
|
||||||
|
|
||||||
|
55
mapytex/calculus/random/expression.py
Normal file
55
mapytex/calculus/random/expression.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
from ..API.expression import Expression
|
||||||
|
from ..core.tree import Tree
|
||||||
|
|
||||||
|
def expression():
|
||||||
|
""" Generate a random expression """
|
||||||
|
pass
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def random(
|
||||||
|
cls,
|
||||||
|
template,
|
||||||
|
conditions=[],
|
||||||
|
rejected=[0],
|
||||||
|
min_max=(-10, 10),
|
||||||
|
variables_scope={},
|
||||||
|
shuffle=False,
|
||||||
|
):
|
||||||
|
""" Initiate randomly the expression
|
||||||
|
|
||||||
|
:param template: the template of the expression
|
||||||
|
:param conditions: conditions on randomly generate variable
|
||||||
|
:param rejected: Values to reject for all random variables
|
||||||
|
:param min_max: Min and max value for all random variables
|
||||||
|
:param variables_scope: Dictionnary for each random varaibles to fic rejected and min_max
|
||||||
|
:param shuffle: allowing to shuffle the tree
|
||||||
|
:returns: TODO
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> e = Expression.random("{a}/{a*k}")
|
||||||
|
>>> e # doctest: +SKIP
|
||||||
|
<Exp: -3 / -15>
|
||||||
|
>>> e = Expression.random("{a}/{a*k} - 3*{b}", variables_scope={'a':{'min_max':(10, 30)}})
|
||||||
|
>>> e # doctest: +SKIP
|
||||||
|
<Exp: 18 / 108 - 3 * 9>
|
||||||
|
>>> e = Expression.random("{a}*x + {b}*x + 3", ["a>b"], rejected=[0, 1])
|
||||||
|
>>> ee = e.simplify()
|
||||||
|
>>> print(e) # doctest: +SKIP
|
||||||
|
10x - 6x + 3
|
||||||
|
>>> print(ee) # doctest: +SKIP
|
||||||
|
4x + 3
|
||||||
|
|
||||||
|
"""
|
||||||
|
rd_t = Tree.from_str(template)
|
||||||
|
leafs = extract_rdleaf(rd_t)
|
||||||
|
rd_varia = extract_rv(leafs)
|
||||||
|
generated = random_generator(
|
||||||
|
rd_varia, conditions, rejected, min_max, variables_scope
|
||||||
|
)
|
||||||
|
computed = compute_leafs(leafs, generated)
|
||||||
|
t = replace_rdleaf(rd_t, computed).map_on_leaf(moify)
|
||||||
|
|
||||||
|
if shuffle:
|
||||||
|
raise NotImplemented("Can't suffle expression yet")
|
||||||
|
|
||||||
|
return cls._post_processing(t)
|
43
mapytex/calculus/random/list.py
Normal file
43
mapytex/calculus/random/list.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
"""
|
||||||
|
List generator
|
||||||
|
--------------
|
||||||
|
|
||||||
|
This function ignores tree structure and works with lists
|
||||||
|
|
||||||
|
>>> values = list_generator(["a", "a*b", "b", "c"], conditions=["b%c==1"])
|
||||||
|
>>> values # doctest: +SKIP
|
||||||
|
{'a': -8, 'a*b': -40, 'b': 5, 'c': 4}
|
||||||
|
"""
|
||||||
|
|
||||||
|
from .core.generate import extract_letters, random_generator, eval_words
|
||||||
|
|
||||||
|
def list_generator(var_list, conditions=[], rejected=[0], min_max=(-10, 10), variables_scope={}, dictionnary=False):
|
||||||
|
""" Generate random computed values from the list
|
||||||
|
|
||||||
|
:param rd_variables: list of random variables to generate (can be computed value - "a*b")
|
||||||
|
:param conditions: condition over variables
|
||||||
|
:param rejected Rejected values for the generator (default [0])
|
||||||
|
:param min_max: (min, max) limits in between variables will be generated
|
||||||
|
:param variables_scope: rejected and min_max define for individual variables
|
||||||
|
:param dictionnary: the return value will be a dictionnary with var_list as keys (default False)
|
||||||
|
:return: dictionnary of generated variables
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> a, ab, b, c = list_generator(["a", "a*b", "b", "c"])
|
||||||
|
>>> a, ab, b, c # doctest: +SKIP
|
||||||
|
(5, -20, -4, -3)
|
||||||
|
>>> a * b == ab
|
||||||
|
True
|
||||||
|
>>> ab # doctest: +SKIP
|
||||||
|
-20
|
||||||
|
>>> a, b # doctest: +SKIP
|
||||||
|
5, -4
|
||||||
|
>>> list_generator(["a", "a*b", "b", "c"], dictionnary=True) # doctest: +SKIP
|
||||||
|
{'a': -3, 'a*b': 18, 'b': -6, 'c': -4}
|
||||||
|
"""
|
||||||
|
rv = extract_letters(var_list)
|
||||||
|
rv_gen = random_generator(rv, conditions, rejected, min_max, variables_scope)
|
||||||
|
generated = eval_words(var_list, rv_gen)
|
||||||
|
if dictionnary:
|
||||||
|
return generated
|
||||||
|
return [generated[v] for v in var_list]
|
0
test/calculus/__init__.py
Normal file
0
test/calculus/__init__.py
Normal file
0
test/calculus/api/__init__.py
Normal file
0
test/calculus/api/__init__.py
Normal file
0
test/calculus/api/random/__init__.py
Normal file
0
test/calculus/api/random/__init__.py
Normal file
6
test/calculus/api/random/test_random.py
Normal file
6
test/calculus/api/random/test_random.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import pytest
|
||||||
|
import mapytex
|
||||||
|
|
||||||
|
def test_random_function():
|
||||||
|
assert 1 == 1
|
||||||
|
#mapytex.random("{a}")
|
Loading…
Reference in New Issue
Block a user