Merge branch 'dev' into 2nd_deg

This commit is contained in:
Lafrite 2015-03-08 18:56:59 +01:00
commit 285b71d2da
6 changed files with 129 additions and 51 deletions

2
TODO
View File

@ -9,5 +9,3 @@
* Expression parents class and his children: Numerical_exp, toGenerate_exp and formal expression
* Create tbl sgn and variation render

View File

@ -139,10 +139,15 @@ class Operator(str):
return ans
def add_parenthesis(self, op):
""" Add parenthesis if necessary """
""" Add parenthesis if necessary
>>> from pymath.polynom import Polynom
>>> P = Polynom([1,2,3])
"""
try:
if op.mainOp.priority < self.priority:
op = flatten_list(["("] + [op] + [")"])
op = flatten_list(["(", op, ")"])
except AttributeError:
# op has not the attribute priority
try:
@ -293,7 +298,7 @@ class op(object):
caract = {
"operator" : "-", \
"name" : "sub",\
"priority" : 1, \
"priority" : 2, \
"arity" : 2, \
"actions" : ("__sub__","__rsub__"), \
"txt" : "{op1} - {op2}",\
@ -336,7 +341,7 @@ class op(object):
caract = {
"operator" : "-", \
"name" : "sub1",\
"priority" : 2, \
"priority" : 3, \
"arity" : 1, \
"actions" : "__neg__",\
"txt" : "- {op1}",\
@ -461,7 +466,7 @@ class op(object):
caract = {
"operator" : "^", \
"name" : "pw",\
"priority" : 5, \
"priority" : 6, \
"arity" : 2, \
"actions" : ("__pow__",""), \
"txt" : "{op1} ^ {op2}",\

View File

@ -5,8 +5,8 @@
from .expression import Expression
from .explicable import Explicable
from .operator import op
from .generic import spe_zip, expand_list, isNumber, transpose_fill, flatten_list, isPolynom
from .render import txt
from .generic import spe_zip, expand_list, isNumber, transpose_fill, flatten_list, isPolynom, isNumerand
from .render import txt,tex
from .random_expression import RdExpression
from itertools import chain
from functools import wraps
@ -33,7 +33,7 @@ class Polynom(Explicable):
"""Docstring for Polynom. """
@classmethod
def random(self, coefs_form=[], conditions=[], letter = "x", degree = 0):
def random(self, coefs_form=[], conditions=[], letter = "x", degree = 0, name = "P"):
""" Create a random polynom from coefs_form and conditions
:param coefs_form: list of forms (one by coef) (ascending degree sorted)
@ -64,9 +64,9 @@ class Polynom(Explicable):
# On "parse" ce string pour créer les coefs
coefs = [eval(i) if type(i)==str else i for i in eval(coefs)]
# Création du polynom
return Polynom(coefs = coefs, letter = letter)
return Polynom(coefs = coefs, letter = letter, name = name)
def __init__(self, coefs = [1], letter = "x" ):
def __init__(self, coefs = [1], letter = "x", name = "P"):
"""Initiate the polynom
:param coef: coefficients of the polynom (ascending degree sorted)
@ -75,25 +75,36 @@ class Polynom(Explicable):
- [a,b,c]: list of coeficient for same degree. [1,[2,3],4] designate 1 + 2x + 3x + 4x^2
- a: a Expression. [1, Expression("2+3"), 4] designate 1 + (2+3)x + 4x^2
:param letter: the string describing the unknown
:param name: Name of the polynom
>>> Polynom([1,2,3]).mainOp
>>> P = Polynom([1, 2, 3])
>>> P.mainOp
'+'
>>> P.name
'P'
>>> P._letter
'x'
>>> Polynom([1]).mainOp
'*'
>>> Polynom([0, 0, 3]).mainOp
'*'
>>> Polynom([1, 2, 3])._letter
'x'
>>> Polynom([1, 2, 3], "y")._letter
'y'
>>> Polynom([1, 2, 3], name = "Q").name
'Q'
"""
super(Polynom, self).__init__()
self.feed_coef(coefs)
self._letter = letter
self.name = name
if self.is_monom():
self.mainOp = "*"
self.mainOp = op.mul
else:
self.mainOp = "+"
self.mainOp = op.add
self._isPolynom = 1
@ -102,13 +113,27 @@ class Polynom(Explicable):
:returns: Expression ready to be simplify
>>> P = Polynom([1, 2, 3])
>>> P(2)
17
>>> for i in P(2).explain():
... print(i)
3 \\times 2^{ 2 } + 2 \\times 2 + 1
3 \\times 4 + 4 + 1
12 + 4 + 1
16 + 1
17
>>> Q = P("1+h")
>>> print(Q)
3 h^{ 2 } + 8 h + 6
>>> R = P(Q)
"""
if isNumber(value):
if isNumerand(value) or Expression.isExpression(value):
postfix_exp = [value if i==self._letter else i for i in self.postfix_tokens]
else:
postfix_exp = [Expression(value) if i==self._letter else i for i in self.postfix_tokens]
return Expression(postfix_exp)
return Expression(postfix_exp).simplify()
def feed_coef(self, l_coef):
"""Feed coef of the polynom. Manage differently whether it's a number or an expression
@ -157,10 +182,10 @@ class Polynom(Explicable):
return "< Polynom " + str(self._coef) + ">"
def __txt__(self):
return self.postfix_tokens
return txt(self.postfix_tokens)
def __tex__(self):
return self.postfix_tokens
return tex(self.postfix_tokens)
def coef_postfix(self, a, i):
"""Return the postfix display of a coeficient
@ -392,6 +417,8 @@ class Polynom(Explicable):
>>> Q = P.derivate()
>>> Q
< Polynom [2, 6]>
>>> print(Q.name)
P'
>>> for i in Q.explain():
... print(i)
2 \\times 3 x + 1 \\times 2
@ -400,7 +427,10 @@ class Polynom(Explicable):
derv_coefs = []
for (i,c) in enumerate(self._coef):
derv_coefs += [Expression([i, c, op.mul])]
return Polynom(derv_coefs[1:]).simplify()
ans = Polynom(derv_coefs[1:]).simplify()
ans.name = self.name + "'"
return ans
@staticmethod
def postfix_add(numbers):
@ -525,12 +555,15 @@ class Polynom(Explicable):
[[< <class 'pymath.expression.Expression'> [2, 'x', '*', 1, '+', 4, 'x', 2, '^', '*', '*'] >], < Polynom [0, 0, 4, < <class 'pymath.expression.Expression'> [2, 4, '*'] >]>, < Polynom [0, 0, 4, < <class 'pymath.expression.Expression'> [2, 4, '*'] >]>]
>>> p*r
< Polynom [0, 1, 2]>
>>> P = Polynom([1,2,3])
>>> Q = Polynom([4,5,6])
>>> P*Q
< Polynom [4, 13, 28, 27, 18]>
"""
# TODO: Je trouve qu'elle grille trop d'étapes... |ven. févr. 27 19:08:44 CET 2015
o_poly = self.conv2poly(other)
coefs = []
coefs = [0]*(self.degree + o_poly.degree + 1)
for (i,a) in enumerate(self._coef):
for (j,b) in enumerate(o_poly._coef):
if a == 0 or b == 0:
@ -541,13 +574,14 @@ class Polynom(Explicable):
elem = a
else:
elem = Expression([a, b, op.mul])
try:
if coefs[i+j]==0:
coefs[i+j] = elem
elif elem != 0:
if type(coefs[i+j]) == list:
coefs[i+j] += [elem]
else:
coefs[i+j] = [coefs[i+j] , elem]
except IndexError:
coefs.append(elem)
p = Polynom(coefs, letter = self._letter)
ini_step = [Expression(self.postfix_tokens + o_poly.postfix_tokens + [op.mul])]
@ -578,6 +612,9 @@ class Polynom(Explicable):
>>> p = Polynom([0,0,1])
>>> p**3
< Polynom [0, 0, 0, 0, 0, 0, 1]>
>>> p = Polynom([1,2,3])
>>> p**2
< Polynom [1, 4, 10, 12, 9]>
"""
if not type(power):
@ -648,7 +685,7 @@ if __name__ == '__main__':
#from .fraction import Fraction
#with Expression.tmp_render(txt):
# p = Polynom([1, 2, 3])
# q = Polynom([0, 2])
# q = Polynom([4, 5, 6])
# for i in (p*q).explain():
# print(i)
# r = Polynom([0,1])
@ -662,7 +699,7 @@ if __name__ == '__main__':
# print(p-q)
# for i in p-q:
# print(i)
Polynom.random(degree = 2, conditions=["{b**2-4*a*c}>0"]) # Polynom deg 2 with positive Delta (ax^2 + bx + c)
#Polynom.random(degree = 2, conditions=["{b**2-4*a*c}>0"]) # Polynom deg 2 with positive Delta (ax^2 + bx + c)
import doctest

View File

@ -35,12 +35,12 @@ class Polynom_deg2(Polynom):
# Création du polynom
return Polynom_deg2(coefs = coefs, letter = letter)
def __init__(self, coefs = [0, 0, 1], letter = "x"):
def __init__(self, coefs = [0, 0, 1], letter = "x", name = "P"):
if len(coefs) < 3 or len(coefs) > 4:
raise ValueError("Polynom_deg2 have to be degree 2 polynoms, they need 3 coefficients, {} are given".format(len(coefs)))
if coefs[2] == 0:
raise ValueError("Polynom_deg2 have to be degree 2 polynoms, coefficient of x^2 can't be 0")
Polynom.__init__(self, coefs, letter)
Polynom.__init__(self, coefs, letter, name = name)
@property
def a(self):

View File

@ -33,20 +33,19 @@ class TestPolynom(unittest.TestCase):
def test_eval_base(self):
p = Polynom([1, 2])
self.assertEqual(p(3).simplify(), 7)
self.assertEqual(p(3), 7)
def test_eval_const(self):
p = Polynom([1])
self.assertEqual(p(3).simplify(), 1)
self.assertEqual(p(3), 1)
def test_eval_const_neg(self):
p = Polynom([-1])
self.assertEqual(p(3).simplify(), -1)
self.assertEqual(p(3), -1)
def test_eval_poly(self):
p = Polynom([1, 2])
hp1 = Expression("h+1")
self.assertEqual(p(hp1).simplify(), Polynom([3,2], "h"))
self.assertEqual(p("h+1"), Polynom([3,2], "h"))
#def test_print(self):
# p = Polynom([1,2,3])

View File

@ -6,6 +6,7 @@ import unittest
from pymath.render import tex, txt,p2i
from pymath.fraction import Fraction
from pymath.polynom import Polynom
from pymath.operator import op
@ -22,6 +23,10 @@ class TestTexRender(unittest.TestCase):
def test_type_render_fraction(self):
self.assertEqual(tex([Fraction(1,2)]), "\\frac{ 1 }{ 2 }")
def test_type_render_poly(self):
P = Polynom([1,2,3])
self.assertEqual(tex([P]), "3 x^{ 2 } + 2 x + 1")
def test_mult_interger(self):
exps = [ [2, 3, op.get_op("*", 2)], [2, -3, op.get_op("*", 2)], [-2, 3, op.get_op("*", 2)]]
wanted_render = [ "2 \\times 3", "2 \\times ( -3 )", "-2 \\times 3"]
@ -37,26 +42,60 @@ class TestTexRender(unittest.TestCase):
self.assertEqual(rend, wanted_render[i])
def test_mult_fraction(self):
exps = [ [2, Fraction(1,2), op.get_op("*", 2)], [Fraction(1,2), 3, op.get_op("*", 2)]]
exps = [ [2, Fraction(1,2), op.mul], [Fraction(1,2), 3, op.mul]]
wanted_render = [ "2 \\times \\frac{ 1 }{ 2 }", "\\frac{ 1 }{ 2 } \\times 3"]
for (i,e) in enumerate(exps):
rend = tex(e)
self.assertEqual(rend, wanted_render[i])
def test_parentheses(self):
mul = op.get_op("*", 2)
add = op.get_op("+", 2)
def test_mult_poly(self):
exps = [[2, Polynom([1,2,3]), op.mul],
[Polynom([1,2,3]), 2, op.mul],
[Polynom([1,2,3]), Polynom([4,5,6]), op.mul],
]
wanted_render = [ "2 ( 3 x^{ 2 } + 2 x + 1 )",
"( 3 x^{ 2 } + 2 x + 1 ) \\times 2",
"( 3 x^{ 2 } + 2 x + 1 ) ( 3 x^{ 2 } + 2 x + 1 )",
]
for (i,e) in enumerate(exps):
rend = tex(e)
self.assertEqual(rend, wanted_render[i])
def test_parentheses_int(self):
exps = [\
[ 2, 3, add, 4, mul],\
[ 2, 3, mul, 4, add],\
[ 2, 3, 4, mul, add],\
[ 2, 3, 4, add, add],\
[ 2, 3, op.add, 4, op.mul],\
[ 2, 3, op.mul, 4, op.add],\
[ 2, 3, 4, op.mul, op.add],\
[ 2, 3, 4, op.add, op.add],\
[ 2, 3, 4, op.add, op.sub],\
]
wanted_render = [\
'( 2 + 3 ) \\times 4',\
'2 \\times 3 + 4',\
'2 + 3 \\times 4',\
'2 + 3 + 4',\
'2 - ( 3 + 4 )',\
]
for (i,e) in enumerate(exps):
rend = tex(e)
self.assertEqual(rend, wanted_render[i])
def test_parentheses_poly(self):
P = Polynom([1,2,3])
Q = Polynom([4,5,6])
exps = [\
[ 2, P, op.add],\
[ 2, P, op.sub],\
[ 2, P, P, op.mul, op.sub],\
[ Q, P, op.add],\
[ Q, P, op.sub],\
]
wanted_render = [\
'2 + 3 x^{ 2 } + 2 x + 1' ,\
'2 - ( 3 x^{ 2 } + 2 x + 1 )' ,\
'2 - ( 3 x^{ 2 } + 2 x + 1 ) ( 3 x^{ 2 } + 2 x + 1 )' ,\
'6 x^{ 2 } + 5 x + 4 + 3 x^{ 2 } + 2 x + 1' ,\
'6 x^{ 2 } + 5 x + 4 - ( 3 x^{ 2 } + 2 x + 1 )' ,\
]
for (i,e) in enumerate(exps):
rend = tex(e)