Reduce and print poly ok!

This commit is contained in:
lafrite 2014-11-11 21:00:45 +01:00
parent 693c982cbe
commit 2b67fc682c
3 changed files with 104 additions and 75 deletions

View File

@ -41,15 +41,15 @@ class Expression(object):
## ---------------------
## Mechanism functions
def simplify(self):
def simplify(self, render=STR_RENDER):
""" Generator which return steps for computing the expression """
if not self.can_go_further():
yield self.STR_RENDER(self.postfix_tokens)
yield render(self.postfix_tokens)
else:
self.compute_exp()
old_s = ''
for s in self.steps:
new_s = self.STR_RENDER(s)
new_s = render(s)
# Astuce pour éviter d'avoir deux fois la même étape (par exemple pour la transfo d'une division en fraction)
if new_s != old_s:
old_s = new_s

View File

@ -264,7 +264,23 @@ def spe_zip(l1,l2):
ans.append(j)
return ans
def transpose_fill(list_lists):
"""Transpose a list of list and if inside list have not the same length, fill with last token
:list_lists: a list of list to transpose
:returns: generator which generate lines of the transposed matrix
>>> Polynom.transpose_fill([[1], [2, 3], [4, 5, 6]])
[[1, 2, 4] , [1, 3, 5], [1, 3, 6]]
"""
for i in range(max([len(l) for l in list_lists])):
col = []
for l in list_lists:
try:
col.append(l[i])
except IndexError:
col.append(l[-1])
yield col
def isOperator(exp):
"""Check if the expression is an opération in "+-*/:^"

View File

@ -3,8 +3,11 @@
from .expression import Expression
from .generic import spe_zip, sum_postfix, expand_list, isNumber
from .operator import op
from .generic import spe_zip, expand_list, isNumber, transpose_fill, flatten_list
#from .generic import spe_zip, sum_postfix, expand_list, isNumber
from .render import txt
from itertools import chain
__all__ = ["Polynom"]
@ -23,6 +26,14 @@ class Polynom(object):
- a: a Expression. [1, Expression("2+3"), 4] designate 1 + (2+3)x + 4x^2
:param letter: the string describing the unknown
>>> Polynom([1,2,3]).mainOp
'+'
>>> Polynom([1]).mainOp
'*'
>>> Polynom([1,2, 3])._letter
'x'
>>> Polynom([1, 2, 3], "y")._letter
'y'
"""
self.feed_coef(coef)
self._letter = letter
@ -33,7 +44,7 @@ class Polynom(object):
else:
self.mainOp = "+"
self._isPolynom
self._isPolynom = 1
def feed_coef(self, l_coef):
"""Feed coef of the polynom. Manage differently whether it's a number or an expression
@ -52,12 +63,22 @@ class Polynom(object):
:returns: the degree of the polynom
>>> Polynom([1, 2, 3]).get_degree()
2
>>> Polynom([1]).get_degree()
0
"""
return len(self._coef) - 1
def is_monom(self):
"""is the polynom a monom (only one coefficent)
:returns: 1 if yes 0 otherwise
>>> Polynom([1, 2, 3]).is_monom()
0
>>> Polynom([1]).is_monom()
1
"""
if len([i for i in self._coef if i != 0])==1:
return 1
@ -65,8 +86,7 @@ class Polynom(object):
return 0
def __str__(self):
# TODO: Voir si on peut utiliser un render |sam. juin 14 08:56:16 CEST 2014
return txt(self.get_postfix())
return txt(self.postfix)
def __repr__(self):
return "< Polynom " + str(self._coef) + ">"
@ -74,7 +94,7 @@ class Polynom(object):
def coef_postfix(self, a, i):
"""Return the postfix display of a coeficient
:param a: value for the coeficient (/!\ as a list)
:param a: value for the coeficient (/!\ as a postfix list)
:param i: power
:returns: postfix tokens of coef
@ -86,46 +106,34 @@ class Polynom(object):
if i == 0:
ans = a
elif i == 1:
ans = a * (a!=[1]) + [self._letter] + ["*"] * (a!=[1])
ans = a * (a!=[1]) + [self._letter] + [op.mul] * (a!=[1])
else:
ans = a * (a!=[1]) + [self._letter, i, "^"] + ["*"] * (a!=[1])
ans = a * (a!=[1]) + [self._letter, i, op.pw] + [op.mul] * (a!=[1])
return ans
def get_postfix(self):
@property
def postfix(self):
"""Return the postfix form of the polynom
:returns: the postfix list of polynom's tokens
"""
self._postfix = []
first_elem = 1
postfix = []
for (i,a) in list(enumerate(self._coef))[::-1]:
if type(a) == list and str(a[-1]) in "+-*^/":
if type(a) == Expression:
# case coef is an arithmetic expression
self._postfix += self.coef_postfix(a,i)
if not first_elem:
self._postfix.append("+")
first_elem = 0
postfix.append(self.coef_postfix(a.postfix_tokens,i))
elif type(a) == list and str(a[-1]) not in "+-*^/":
elif type(a) == list:
# case need to repeat the x^i
for b in a:
if type(b) == list:
self._postfix += self.coef_postfix(b,i)
else:
self._postfix += self.coef_postfix([b],i)
if not first_elem:
self._postfix.append("+")
first_elem = 0
postfix.append(self.coef_postfix([b],i))
elif a != 0:
self._postfix += self.coef_postfix([a],i)
if not first_elem:
self._postfix.append("+")
first_elem = 0
postfix.append(self.coef_postfix([a],i))
return self._postfix
return flatten_list(self.postfix_add(postfix))
def conv2poly(self, other):
"""Convert anything number into a polynom"""
@ -149,53 +157,54 @@ class Polynom(object):
:returns: new Polynom with numbers coefficients
"""
steps = []
for a in self._coef:
# gather steps for every coeficients
coefs_steps = []
for coef in self._coef:
coef_steps = []
if type(a) == Expression:
# case coef is an arithmetic expression
coef_steps = list(a.simplify(render = lambda x:x))
steps.append(coef_steps)
elif type(a) == list:
# case need to repeat the x^i
if [i for i in a if type(i) == list] != []:
# first we simplify arithmetic exp
# Et hop un coup de sorcelerie!
elem = [list(Expression(i).simplify(render = lambda x:self.list_or_num(x))) if type(i) == list else i for i in a ]
elem = expand_list(elem)
coef_steps += elem
exp = elem[-1]
else:
exp = a
exp = sum_postfix(exp)
exp = Expression(exp)
coef_steps += list(exp.simplify(render = lambda x:x))
steps.append(coef_steps)
if type(coef) != Expression:
# On converti en postfix avec une addition
postfix_add = self.postfix_add(coef)
# On converti en Expression
coef_exp = Expression(postfix_add)
else:
steps.append(a)
coef_exp = coef
steps = expand_list(steps)
# On fait réduire l'expression puis on ajoute dans steps
coef_steps = list(coef_exp.simplify(render = lambda x:Expression(x)))
return [Polynom(s) for s in steps]
# On ajoute toutes ces étapes
coefs_steps.append(coef_steps)
# On retourne la matrice
for coefs in transpose_fill(coefs_steps):
yield Polynom(coefs, self._letter)
@staticmethod
def list_or_num(x):
if len(x) == 1:
return x[0]
else:
return x
def postfix_add(numbers):
"""Convert a list of numbers into a postfix addition
:numbers: list of numbers
:returns: Postfix list of succecive attition of number
>>> Polynom.postfix_add([1])
[1]
>>> Polynom.postfix_add([1, 2])
[1, 2, '+']
>>> Polynom.postfix_add([1, 2, 3])
[1, 2, '+', 3, '+']
>>> Polynom.postfix_add(1)
[1]
"""
if not type(numbers) == list:
return [numbers]
else:
ans = [[a, op.add] if i!=0 else [a] for (i,a) in enumerate(numbers)]
return list(chain.from_iterable(ans))
def simplify(self):
"""Same as reduce """
return self.reduce()
def __eq__(self, other):
o_poly = self.conv2poly(other)
return self._coef == o_poly._coef
@ -275,23 +284,24 @@ def test(p,q):
print("\n Plus ------")
for i in (p + q):
#print(repr(i))
#print("\t", str(i.get_postfix()))
#print("\t", str(i.postfix))
print(i)
print("\n Moins ------")
for i in (p - q):
#print(repr(i))
#print("\t", str(i.get_postfix()))
#print("\t", str(i.postfix))
print(i)
print("\n Multiplier ------")
for i in (p * q):
#print(repr(i))
#print("\t", str(i.get_postfix()))
#print("\t", str(i.postfix))
print(i)
if __name__ == '__main__':
from .fraction import Fraction
p = Polynom([1, -2 ])
q = Polynom([4, 7])
#test(p,q)
@ -304,10 +314,10 @@ if __name__ == '__main__':
#print("-- Poly étrange --")
#p = Polynom([1, [[2, 3, "*"],3], 4], "x")
#print(repr(p))
#for i in p.simplify():
# print(repr(i))
p = Polynom([1, [2, 3], 4], "x")
print(repr(p))
for i in p.simplify():
print(i)
#print("-- Poly étrange --")
#p = Polynom([1, [[2, 3, "*"], [4,5,"*"]], 4], "x")
#print(repr(p))
@ -315,6 +325,9 @@ if __name__ == '__main__':
#for i in p.simplify():
# print(repr(i))
import doctest
doctest.testmod()
# -----------------------------
# Reglages pour 'vim'