Change names and pass tests

This commit is contained in:
Benjamin Bertrand
2017-04-17 16:48:52 +03:00
parent 30a6402e40
commit 500426bf82
54 changed files with 103 additions and 87 deletions

10
mapytex/stat/__init__.py Normal file
View File

@@ -0,0 +1,10 @@
#!/usr/bin/env python
# encoding: utf-8
from .dataset import Dataset
from .weightedDataset import WeightedDataset
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

199
mapytex/stat/dataset.py Normal file
View File

@@ -0,0 +1,199 @@
#/usr/bin/env python
# -*- coding:Utf-8 -*-
#
#
# Ensemble de fonction rendant beaucoup plus pratique la résolution et l'élaboration des exercices de stat au lycée
#
#
# TODO: Rendre toutes les réponses Explicable!! |mar. janv. 12 09:41:00
# EAT 2016
from math import sqrt, ceil
from .number_tools import number_factory
from .random_generator import random_generator
class Dataset(list):
""" A dataset (a list) with statistics and latex rendering methods
>>> s = Dataset(range(100))
>>> s.sum()
4950
>>> s.mean()
49.5
>>> s.deviation()
83325
>>> s.variance()
833.25
>>> s.sd()
28.87
"""
@classmethod
def random(cls, length, data_name="Valeurs",
distrib="gauss", rd_args=(0, 1),
nbr_format=lambda x: round(x, 2),
v_min=None, v_max=None,
exact_mean=None):
""" Generate a random list of value
:param length: length of the dataset
:param distrib: Distribution of the data set. It can be a function or string from ["randint", "uniform", "gauss", "choice"]
:param rd_args: arguments to pass to distrib
:param nbr_format: function which format value
:param v_min: minimum accepted value
:param v_max: maximum accepted value
:param exact_mean: if set, the last generated number will be create in order that the computed mean is exacly equal to "exact_mean"
"""
data = random_generator(length,
distrib, rd_args,
nbr_format,
v_min, v_max,
exact_mean)
return cls(data, data_name=data_name)
def __init__(self, data=[], data_name="Valeurs"):
"""
Create a numeric data set
:param data: values of the data set
:param data_name: name of the data set
"""
list.__init__(self, data)
self_name = data_name
def add_data(self, data):
"""Add datas to the data set
:param data: datas
"""
try:
self += data
except TypeError:
self += [data]
# --------------------------
# Stat tools
def effectif_total(self):
return len(self)
@number_factory
def sum(self):
return sum(self)
@number_factory
def mean(self):
return self.sum() / self.effectif_total()
@number_factory
def deviation(self):
""" Compute the deviation (not normalized) """
mean = self.mean()
return sum([(x - mean)**2 for x in self])
@number_factory
def variance(self):
return self.deviation() / self.effectif_total()
@number_factory
def sd(self):
""" Compute the standard deviation """
return sqrt(self.variance())
def quartiles(self):
"""
Calcul les quartiles de la série.
:return: un tuple avec (min, Q1, Me, Q3, Max)
>>> w = Dataset(range(12))
>>> w.quartiles()
(0, 2.5, 5.5, 8.5, 11)
"""
return (
min(self),
self.quartile(1),
self.quartile(2),
self.quartile(3),
max(self))
@number_factory
def quartile(self, quartile=1):
"""
Calcul un quartile de la série.
:param quartile: quartile à calculer (par defaut 1 -> Q1)
:return: le quartile demandé
: Example:
>>> w = Dataset(range(12))
>>> w.quartile(1)
2.5
>>> w.quartile(2)
5.5
>>> w.quartile(3)
8.5
>>> w = Dataset(range(14))
>>> w.quartile(1)
3
>>> w.quartile(2)
6.5
>>> w.quartile(3)
10
"""
# -1 to match with list indexing
position = self.posi_quartile(quartile) - 1
if position.is_integer():
return (self[int(position)] + self[int(position) + 1]) / 2
else:
return self[ceil(position)]
def posi_quartile(self, quartile=1):
"""
Calcul la position du quartile
:param quartile: le quartile concerné
:return : la position du quartile (arondis à l'entier suppérieur, non arrondis)
"""
return quartile * self.effectif_total() / 4
# --------------------------
# Rendu latex
def tabular_latex(self, nbr_lines=1):
""" Latex code to display dataset as a tabular """
d_per_line = self.effectif_total() // nbr_lines
d_last_line = self.effectif_total() % d_per_line
splited_data = [self[x:x + d_per_line]
for x in range(0, self.effectif_total(), d_per_line)]
# On ajoute les éléments manquant pour la dernière line
if d_last_line:
splited_data[-1] += [' '] * (d_per_line - d_last_line)
# Construction du tableau
latex = "\\begin{{tabular}}{{|c|*{{{nbr_col}}}{{c|}}}} \n".format(
nbr_col=d_per_line)
latex += "\t\t \hline \n"
d_lines = [' & '.join(map(str, l)) for l in splited_data]
latex += " \\\\ \n \\hline \n".join(d_lines)
latex += " \\\\ \n \\hline \n"
latex += "\\end{tabular}"
return latex
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,25 @@
#/usr/bin/env python
# -*- coding:Utf-8 -*-
from functools import wraps
def number_factory(fun):
""" Decorator which format returned value """
@wraps(fun)
def wrapper(*args, **kwargs):
ans = fun(*args, **kwargs)
try:
if ans.is_integer():
return int(ans)
else:
return round(ans, 2)
except AttributeError:
return ans
return wrapper
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,78 @@
#/usr/bin/env python
# -*- coding:Utf-8 -*-
from random import randint, uniform, gauss, choice
def random_generator(length,
distrib=gauss, rd_args=(0, 1),
nbr_format=lambda x: round(x, 2),
v_min=None, v_max=None,
exact_mean=None):
""" Generate a random list of value
:param length: length of the dataset
:param distrib: Distribution of the data set. It can be a function or string from ["randint", "uniform", "gauss", "choice"]
:param rd_args: arguments to pass to distrib
:param nbr_format: function which format value
:param v_min: minimum accepted value
:param v_max: maximum accepted value
:param exact_mean: if set, the last generated number will be create in order that the computed mean is exacly equal to "exact_mean"
>>> random_generator(10)
>>> random_generator(10, distrib = uniform, rd_args = (5, 10))
>>> random_generator(10, distrib = "uniform", rd_args = (5, 10))
>>> random_generator(10, v_min = 0)
>>> random_generator(10, exact_mean = 0)
>>> random_generator(10, distrib = gauss, rd_args = (50,20), nbr_format = int)
"""
# if exact_mean is set, we create automaticaly only length-1 value
if exact_mean is not None:
length = length - 1
# build function to test created values
if v_min is None:
v1 = lambda x: True
else:
v1 = lambda x: x >= v_min
if v_max is None:
v2 = lambda x: True
else:
v2 = lambda x: x <= v_max
validate = lambda x: v1(x) and v2(x)
# get distrib function
distribs = {
"gauss": gauss,
"uniform": uniform,
"randint": randint,
"choice": choice}
try:
distrib(*rd_args)
except TypeError:
distrib = distribs[distrib]
# building values
data = []
for _ in range(length):
valid = False
while not valid:
v = nbr_format(distrib(*rd_args))
valid = validate(v)
data.append(v)
# Build last value
if exact_mean is not None:
last_v = nbr_format((length + 1) * exact_mean - sum(data))
if not validate(last_v):
raise ValueError(
"Can't build the last value. Conflict between v_min/v_max and exact_mean")
data.append(last_v)
return data
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,190 @@
#/usr/bin/env python
# -*- coding:Utf-8 -*-
#
#
# Ensemble de fonction rendant beaucoup plus pratique la résolution et l'élaboration des exercices de stat au lycée
#
#
from math import sqrt, ceil
from collections import Counter
from .dataset import Dataset
from ..calculus.generic import flatten_list
from .number_tools import number_factory
class WeightedDataset(dict):
""" A weighted dataset with statistics and latex rendering methods
>>> w = WeightedDataset([1, 2, 3, 4], "Enfants", [10, 11, 12, 13])
>>> print(w)
{1: 10, 2: 11, 3: 12, 4: 13}
>>> w.effectif_total()
46
>>> w.sum()
120
>>> w.mean()
2.61
>>> w.deviation()
56.96
>>> w.variance()
1.24
>>> w.sd()
1.11
"""
def __init__(
self,
datas=[],
data_name="Valeurs",
weights=[],
weight_name="Effectifs"):
"""
Initiate the WeightedDataset
"""
if datas and not weights:
weightedDatas = Counter(datas)
elif datas and weights:
if len(datas) != len(weights):
raise ValueError("Datas and weights should have same length")
else:
weightedDatas = {i[0]: i[1] for i in zip(datas, weights)}
dict.__init__(self, weightedDatas)
self.data_name = data_name
self.weight_name = weight_name
def add_data(self, data, weight=1):
try:
self[data] += weight
except KeyError:
self[data] = weight
@number_factory
def total_weight(self):
return sum(self.values())
def effectif_total(self):
return self.total_weight()
@number_factory
def sum(self):
""" Not really a sum but the sum of the product of key and values """
return sum([k * v for (k, v) in self.items()])
@number_factory
def mean(self):
return self.sum() / self.effectif_total()
@number_factory
def deviation(self):
""" Compute the deviation (not normalized) """
mean = self.mean()
return sum([v * (k - mean)**2 for (k, v) in self.items()])
@number_factory
def variance(self):
return self.deviation() / self.effectif_total()
@number_factory
def sd(self):
""" Compute the standard deviation """
return sqrt(self.variance())
def quartiles(self):
"""
Calcul les quartiles de la série.
:return: un tuple avec (min, Q1, Me, Q3, Max)
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(5)]))
>>> w.quartiles()
(1, 2, 3, 4, 4)
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(6)]))
>>> w.quartiles()
(1, 3, 4, 5, 5)
"""
return (min(self.keys()),
self.quartile(1),
self.quartile(2),
self.quartile(3),
max(self.keys()))
@number_factory
def quartile(self, quartile=1):
"""
Calcul un quartile de la série.
:param quartile: quartile à calculer (par defaut 1 -> Q1)
:return: le quartile demandé
: Example:
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(5)]))
>>> w.quartile(1)
2
>>> w.quartile(2)
3
>>> w.quartile(3)
4
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(6)]))
>>> w.quartile(1)
3
>>> w.quartile(2)
4
>>> w.quartile(3)
5
"""
# -1 to match with list indexing
position = self.posi_quartile(quartile) - 1
expanded_values = flatten_list([v * [k] for (k, v) in self.items()])
if position.is_integer():
return (expanded_values[int(position)] +
expanded_values[int(position) + 1]) / 2
else:
return expanded_values[ceil(position)]
def posi_quartile(self, quartile=1):
"""
Calcul la position du quartile
:param quartile: le quartile concerné
:return : la position du quartile (arondis à l'entier suppérieur, non arrondis)
"""
return quartile * self.effectif_total() / 4
# --------------------------
# Rendu latex
def tabular_latex(self):
""" Latex code to display dataset as a tabular """
latex = "\\begin{{tabular}}{{|c|*{{{nbr_col}}}{{c|}}}} \n".format(
nbr_col=len(self.keys()))
latex += "\t \hline \n"
data_line = "\t {data_name} ".format(data_name=self.data_name)
weight_line = "\t {weight_name} ".format(weight_name=self.weight_name)
# TODO: Il faudra trouver une solution pour le formatage des données
# |sam. janv. 9 13:14:26 EAT 2016
for (v, e) in self.items():
data_line += "& {val} ".format(val=v)
weight_line += "& {eff} ".format(eff=e)
latex += data_line + "\\\\ \n \t \\hline \n"
latex += weight_line + "\\\\ \n \t \\hline \n"
latex += "\\end{tabular}"
return latex
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del