diff --git a/pymath/polynomDeg2.py b/pymath/polynomDeg2.py index 7b1f9f4..1efd025 100644 --- a/pymath/polynomDeg2.py +++ b/pymath/polynomDeg2.py @@ -39,18 +39,16 @@ class Polynom_deg2(Polynom): >>> P = Polynom_deg2([1,2,3]) >>> P.delta - < Expression [2, 2, '^', 4, 3, 1, '*', '*', '-']> - >>> for i in P.delta.simplify(): + -8 + >>> for i in P.delta.explain(): ... print(i) 2^{ 2 } - 4 \\times 3 \\times 1 4 - 4 \\times 3 4 - 12 -8 - >>> P.delta.simplified() - -8 """ - return Expression([self.b, 2, op.pw, 4, self.a, self.c, op.mul, op.mul, op.sub]) + return Expression([self.b, 2, op.pw, 4, self.a, self.c, op.mul, op.mul, op.sub]).simplify() @property def alpha(self): @@ -58,19 +56,15 @@ class Polynom_deg2(Polynom): >>> P = Polynom_deg2([1,2,3]) >>> P.alpha - < Expression [2, '-', 2, 3, '*', '/']> - >>> for i in P.alpha.simplify(): + < Fraction -1 / 3> + >>> for i in P.alpha.explain(): ... print(i) \\frac{ - 2 }{ 2 \\times 3 } \\frac{ -2 }{ 6 } \\frac{ ( -1 ) \\times 2 }{ 3 \\times 2 } \\frac{ -1 }{ 3 } - \\frac{ -2 }{ 6 } - >>> P.alpha.simplified() # Bug avec les fractions ici, on devrait avoir -1/3 pas -2/6... - < Fraction -2 / 6> - """ - return Expression([self.b, op.sub1, 2, self.a, op.mul, op.div]) + return Expression([self.b, op.sub1, 2, self.a, op.mul, op.div]).simplify() @property def beta(self): @@ -78,31 +72,16 @@ class Polynom_deg2(Polynom): >>> P = Polynom_deg2([1,2,3]) >>> P.beta - < Expression [3, < Fraction -2 / 6>, 2, '^', '*', 2, < Fraction -2 / 6>, '*', '+', 1, '+']> - >>> for i in P.beta.simplify(): # Ça serait bien que l'on puisse enlever des étapes maintenant... - ... print(i) - 3 \\times \\frac{ -2 }{ 6 }^{ 2 } + 2 \\times \\frac{ -2 }{ 6 } + 1 - 3 \\times \\frac{ ( -2 )^{ 2 } }{ 6^{ 2 } } + \\frac{ ( -2 ) \\times 1 \\times 2 }{ 3 \\times 2 } + 1 - 3 \\times \\frac{ 4 }{ 36 } + \\frac{ ( -2 ) \\times 2 }{ 6 } + 1 - 3 \\times \\frac{ 1 \\times 4 }{ 9 \\times 4 } + \\frac{ -4 }{ 6 } + 1 - 3 \\times \\frac{ 1 }{ 9 } + \\frac{ ( -2 ) \\times 2 }{ 3 \\times 2 } + 1 - 3 \\times \\frac{ 1 }{ 9 } + \\frac{ -2 }{ 3 } + 1 - \\frac{ 1 \\times 1 \\times 3 }{ 3 \\times 3 } + \\frac{ -2 }{ 3 } + 1 - \\frac{ 1 \\times 3 }{ 9 } + \\frac{ -2 }{ 3 } + 1 - \\frac{ 3 }{ 9 } + \\frac{ -2 }{ 3 } + 1 - \\frac{ 1 \\times 3 }{ 3 \\times 3 } + \\frac{ -2 }{ 3 } + 1 - \\frac{ 1 }{ 3 } + \\frac{ -2 }{ 3 } + 1 - \\frac{ 1 + ( -2 ) }{ 3 } + 1 - \\frac{ -1 }{ 3 } + 1 - \\frac{ ( -1 ) \\times 1 }{ 3 \\times 1 } + \\frac{ 1 \\times 3 }{ 1 \\times 3 } - \\frac{ -1 }{ 3 } + \\frac{ 3 }{ 3 } - \\frac{ ( -1 ) + 3 }{ 3 } - \\frac{ 2 }{ 3 } - >>> P.beta.simplified() < Fraction 2 / 3> - + >>> for i in P.beta.explain(): # Ça serait bien que l'on puisse enlever des étapes maintenant... + ... print(i) + 3 \\times \\frac{ -1 }{ 3 }^{ 2 } + 2 \\times \\frac{ -1 }{ 3 } + 1 + 3 \\times \\frac{ 1 }{ 9 } + \\frac{ -2 }{ 3 } + 1 + \\frac{ 1 }{ 3 } + \\frac{ -2 }{ 3 } + 1 + \\frac{ -1 }{ 3 } + 1 + \\frac{ 2 }{ 3 } """ - return self(self.alpha.simplified()) + return self(self.alpha).simplify() def roots(self): """ Compute roots of the polynom @@ -121,9 +100,9 @@ class Polynom_deg2(Polynom): >>> P.roots() [-1.0, 1.0] """ - if self.delta.simplified() > 0: - self.roots = [(-self.b - sqrt(self.delta.simplified()))/(2*self.a), (-self.b + sqrt(self.delta.simplified()))/(2*self.a)] - elif self.delta.simplified() == 0: + if self.delta > 0: + self.roots = [(-self.b - sqrt(self.delta))/(2*self.a), (-self.b + sqrt(self.delta))/(2*self.a)] + elif self.delta == 0: self.roots = [-self.b /(2*self.a)] else: self.roots = [] @@ -151,12 +130,12 @@ class Polynom_deg2(Polynom): >>> print(P.tbl_sgn()) \\tkzTabLine{, -,} """ - if self.delta.simplified() > 0: + if self.delta > 0: if self.a > 0: return "\\tkzTabLine{, +, z, -, z , +,}" else: return "\\tkzTabLine{, -, z, +, z , -,}" - elif self.delta.simplified() == 0: + elif self.delta == 0: if self.a > 0: return "\\tkzTabLine{, +, z, +,}" else: @@ -179,7 +158,7 @@ class Polynom_deg2(Polynom): \\tkzTabVar{+/{$+\\infty$}, -/{$\\frac{ 2 }{ 3 }$}, +/{$+\\infty$}} """ - beta = self.beta.simplified() + beta = self.beta if limits: if self.a > 0: return "\\tkzTabVar{+/{$+\\infty$}, -/{$" + str(beta) + "$}, +/{$+\\infty$}}"