Feat: coefficients, delta and some roots for polynomial, Linear and Quadratic
This commit is contained in:
parent
fa8beb6bb2
commit
d45ab560c9
@ -31,6 +31,7 @@ class Polynomial(Token):
|
||||
"""
|
||||
|
||||
def __init__(self, a, name="", ancestor=None):
|
||||
""" Initiate Polynomial with a MO"""
|
||||
if not isinstance(a, MO):
|
||||
if isinstance(a, str):
|
||||
raise TypeError
|
||||
@ -47,17 +48,37 @@ class Polynomial(Token):
|
||||
|
||||
return cls(mo, name, ancestor)
|
||||
|
||||
@classmethod
|
||||
def from_coefficients(cls, coefficients):
|
||||
""" Initiate polynomial from list of coefficients """
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def random(cls):
|
||||
raise NotImplemented
|
||||
|
||||
def __setitem__(self, key, item):
|
||||
""" Use Polynomial like if they were a dictionnary to set coefficients """
|
||||
pass
|
||||
raise NotImplemented("Can't set coefficient of a polynomial")
|
||||
|
||||
def __getitem__(self, key):
|
||||
""" Use Polynomial like if they were a dictionnary to get coefficients """
|
||||
pass
|
||||
""" Use Polynomial like if they were a dictionnary to get coefficients
|
||||
|
||||
:examples:
|
||||
>>> from ...core.MO.polynomial import MOpolynomial
|
||||
>>> P = Polynomial(MOpolynomial('x', [1, 2, 3]))
|
||||
>>> P[0]
|
||||
<MOnumber 1>
|
||||
>>> P[1]
|
||||
<MOnumber 2>
|
||||
>>> P[2]
|
||||
<MOnumber 3>
|
||||
>>> P[3]
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
KeyError: 3
|
||||
"""
|
||||
return self._mo.coefficients[key]
|
||||
|
||||
def __call__(self, value):
|
||||
""" Call a Polynomial to evaluate itself on value
|
||||
@ -80,14 +101,42 @@ class Polynomial(Token):
|
||||
tree = tree.map_on_leaf(replace_var)
|
||||
|
||||
return Expression(tree).simplify()
|
||||
@property
|
||||
def roots(self):
|
||||
""" Get roots of the Polynomial """
|
||||
raise NotImplemented("Can't compute roots not specific polynomial")
|
||||
|
||||
|
||||
class Linear(Polynomial):
|
||||
|
||||
""" Token representing a linear """
|
||||
""" Token representing a linear ax + b
|
||||
|
||||
:examples:
|
||||
>>> from ...core.MO.polynomial import MOpolynomial, MOMonomial
|
||||
>>> P = Linear(MOpolynomial('x', [1, 2]))
|
||||
>>> P
|
||||
<Linear 2x + 1>
|
||||
>>> P.a
|
||||
<MOnumber 2>
|
||||
>>> P.b
|
||||
<MOnumber 1>
|
||||
>>> P.roots
|
||||
[<Fraction - 2 / 1>]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, mo, name="", ancestor=None):
|
||||
""" Initiate Linear with MO
|
||||
|
||||
:examples:
|
||||
>>> from ...core.MO.polynomial import MOpolynomial, MOMonomial
|
||||
>>> P = Linear(MOpolynomial('x', [1, 2]))
|
||||
>>> P
|
||||
<Linear 2x + 1>
|
||||
>>> Q = Linear(MOMonomial(3, 'x', 1))
|
||||
>>> Q
|
||||
<Linear 3x>
|
||||
"""
|
||||
Polynomial.__init__(self, mo, name, ancestor)
|
||||
self._mathtype = "affine"
|
||||
|
||||
@ -95,12 +144,69 @@ class Linear(Polynomial):
|
||||
def random(cls):
|
||||
raise NotImplemented
|
||||
|
||||
@property
|
||||
def a(self):
|
||||
return self[1]
|
||||
|
||||
@property
|
||||
def b(self):
|
||||
return self[0]
|
||||
|
||||
@property
|
||||
def roots(self):
|
||||
""" Get the root of the polynomial
|
||||
|
||||
:examples:
|
||||
>>> from ...core.MO.polynomial import MOpolynomial, MOMonomial
|
||||
>>> P = Linear(MOpolynomial('x', [1, 2]))
|
||||
>>> P.roots
|
||||
[<Fraction - 2 / 1>]
|
||||
>>> #P = Linear(MOpolynomial('x', [1, -2]))
|
||||
>>> #P.roots
|
||||
"""
|
||||
|
||||
try:
|
||||
return [Expression.from_str(f"-{self.a}/{self.b}").simplify()]
|
||||
except AttributeError:
|
||||
return [Expression.from_str(f"-{self.a}/{self.b}")]
|
||||
|
||||
|
||||
class Quadratic(Polynomial):
|
||||
|
||||
""" Token representing a quadratic """
|
||||
""" Token representing a quadratic ax^2 + bx + c
|
||||
|
||||
:examples:
|
||||
>>> from ...core.MO.polynomial import MOpolynomial
|
||||
>>> P = Quadratic(MOpolynomial('x', [1, 2, 3]))
|
||||
>>> P
|
||||
<Quadratic 3x^2 + 2x + 1>
|
||||
>>> P.a
|
||||
<MOnumber 3>
|
||||
>>> P.b
|
||||
<MOnumber 2>
|
||||
>>> P.c
|
||||
<MOnumber 1>
|
||||
>>> P.delta
|
||||
<Integer - 8>
|
||||
>>> for s in P.delta.explain():
|
||||
... print(s)
|
||||
2^2 - 4 * 3 * 1
|
||||
4 - 12 * 1
|
||||
4 - 12
|
||||
- 8
|
||||
>>> P.roots
|
||||
[]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, mo, name="", ancestor=None):
|
||||
""" Initiate Quadratic from MO
|
||||
|
||||
>>> from ...core.MO.polynomial import MOpolynomial
|
||||
>>> P = Quadratic(MOpolynomial('x', [1, 2, 3]))
|
||||
>>> P
|
||||
<Quadratic 3x^2 + 2x + 1>
|
||||
"""
|
||||
|
||||
Polynomial.__init__(self, mo, name, ancestor)
|
||||
self._mathtype = "polynome du 2nd degré"
|
||||
@ -109,6 +215,32 @@ class Quadratic(Polynomial):
|
||||
def random(cls):
|
||||
raise NotImplemented
|
||||
|
||||
@property
|
||||
def a(self):
|
||||
return self[2]
|
||||
|
||||
@property
|
||||
def b(self):
|
||||
return self[1]
|
||||
|
||||
@property
|
||||
def c(self):
|
||||
return self[0]
|
||||
|
||||
@property
|
||||
def delta(self):
|
||||
return Expression.from_str(f"{self.b}^2-4*{self.a}*{self.c}").simplify()
|
||||
|
||||
@property
|
||||
def roots(self):
|
||||
if self.delta._mo < 0:
|
||||
return []
|
||||
elif self.delta._mo == 0:
|
||||
return [Expression.from_str(f"-{self.b}/(2*{self.a})").simplify()]
|
||||
else:
|
||||
raise NotImplemented("Todo!")
|
||||
|
||||
|
||||
|
||||
def extract_variable(leaf):
|
||||
try:
|
||||
|
Loading…
Reference in New Issue
Block a user