Add alpha and beta method to polynomDeg2
This commit is contained in:
parent
720eb37a4f
commit
de338e914f
@ -14,7 +14,6 @@ class Polynom_deg2(Polynom):
|
||||
"""
|
||||
|
||||
def __init__(self, coefs = [0, 0, 1], letter = "x"):
|
||||
"""@todo: to be defined1. """
|
||||
if len(coefs) < 3 or len(coefs) > 4:
|
||||
raise ValueError("Polynom_deg2 have to be degree 2 polynoms, they need 3 coefficients, {} are given".format(len(coefs)))
|
||||
if coefs[2] == 0:
|
||||
@ -42,9 +41,9 @@ class Polynom_deg2(Polynom):
|
||||
>>> P.delta
|
||||
< Expression [2, 2, '^', 4, 3, 1, '*', '*', '-']>
|
||||
>>> for i in P.delta.simplify():
|
||||
print(i)
|
||||
2^{ 2 } - 4 \times 3 \times 1
|
||||
4 - 4 \times 3
|
||||
... print(i)
|
||||
2^{ 2 } - 4 \\times 3 \\times 1
|
||||
4 - 4 \\times 3
|
||||
4 - 12
|
||||
-8
|
||||
>>> P.delta.simplified()
|
||||
@ -53,6 +52,58 @@ class Polynom_deg2(Polynom):
|
||||
|
||||
return Expression([self.b, 2, op.pw, 4, self.a, self.c, op.mul, op.mul, op.sub])
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
""" Compute alpha the abcisse of the extremum
|
||||
|
||||
>>> P = Polynom_deg2([1,2,3])
|
||||
>>> P.alpha
|
||||
< Expression [2, '-', 2, 3, '*', '/']>
|
||||
>>> for i in P.alpha.simplify():
|
||||
... print(i)
|
||||
\\frac{ - 2 }{ 2 \\times 3 }
|
||||
\\frac{ -2 }{ 6 }
|
||||
\\frac{ ( -1 ) \\times 2 }{ 3 \\times 2 }
|
||||
\\frac{ -1 }{ 3 }
|
||||
\\frac{ -2 }{ 6 }
|
||||
>>> P.alpha.simplified() # Bug avec les fractions ici, on devrait avoir -1/3 pas -2/6...
|
||||
< Fraction -2 / 6 >
|
||||
|
||||
"""
|
||||
return Expression([self.b, op.sub1, 2, self.a, op.mul, op.div])
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
""" Compute beta the extremum of self
|
||||
|
||||
>>> P = Polynom_deg2([1,2,3])
|
||||
>>> P.beta
|
||||
< Expression [3, < Fraction -2 / 6>, 2, '^', '*', 2, < Fraction -2 / 6>, '*', '+', 1, '+']>
|
||||
>>> for i in P.beta.simplify(): # Ça serait bien que l'on puisse enlever des étapes maintenant...
|
||||
... print(i)
|
||||
3 \times \frac{ -2 }{ 6 }^{ 2 } + 2 \times \frac{ -2 }{ 6 } + 1
|
||||
3 \times \frac{ ( -2 )^{ 2 } }{ 6^{ 2 } } + \frac{ ( -2 ) \times 1 \times 2 }{ 3 \times 2 } + 1
|
||||
3 \times \frac{ 4 }{ 36 } + \frac{ ( -2 ) \times 2 }{ 6 } + 1
|
||||
3 \times \frac{ 1 \times 4 }{ 9 \times 4 } + \frac{ -4 }{ 6 } + 1
|
||||
3 \times \frac{ 1 }{ 9 } + \frac{ ( -2 ) \times 2 }{ 3 \times 2 } + 1
|
||||
3 \times \frac{ 1 }{ 9 } + \frac{ -2 }{ 3 } + 1
|
||||
\frac{ 1 \times 1 \times 3 }{ 3 \times 3 } + \frac{ -2 }{ 3 } + 1
|
||||
\frac{ 1 \times 3 }{ 9 } + \frac{ -2 }{ 3 } + 1
|
||||
\frac{ 3 }{ 9 } + \frac{ -2 }{ 3 } + 1
|
||||
\frac{ 1 \times 3 }{ 3 \times 3 } + \frac{ -2 }{ 3 } + 1
|
||||
\frac{ 1 }{ 3 } + \frac{ -2 }{ 3 } + 1
|
||||
\frac{ 1 + ( -2 ) }{ 3 } + 1
|
||||
\frac{ -1 }{ 3 } + 1
|
||||
\frac{ ( -1 ) \times 1 }{ 3 \times 1 } + \frac{ 1 \times 3 }{ 1 \times 3 }
|
||||
\frac{ -1 }{ 3 } + \frac{ 3 }{ 3 }
|
||||
\frac{ ( -1 ) + 3 }{ 3 }
|
||||
\frac{ 2 }{ 3 }
|
||||
>>> P.beta.simplified()
|
||||
< Fraction 2 / 3>
|
||||
|
||||
"""
|
||||
return self(self.alpha.simplified())
|
||||
|
||||
def roots(self):
|
||||
""" Compute roots of the polynom
|
||||
|
||||
@ -82,23 +133,23 @@ class Polynom_deg2(Polynom):
|
||||
""" Return the sign line for tkzTabLine
|
||||
|
||||
>>> P = Polynom_deg2([2, 5, 2])
|
||||
>>> P.tbl_sgn()
|
||||
'\\tkzTabLine{, +, z, -, z , +,}'
|
||||
>>> print(P.tbl_sgn())
|
||||
\\tkzTabLine{, +, z, -, z , +,}
|
||||
>>> P = Polynom_deg2([2, 1, -2])
|
||||
>>> P.tbl_sgn()
|
||||
'\\tkzTabLine{, -, z, +, z , -,}'
|
||||
>>> print(P.tbl_sgn())
|
||||
\\tkzTabLine{, -, z, +, z , -,}
|
||||
>>> P = Polynom_deg2([1, 2, 1])
|
||||
>>> P.tbl_sgn()
|
||||
'\\tkzTabLine{, +, z, +,}'
|
||||
>>> print(P.tbl_sgn())
|
||||
\\tkzTabLine{, +, z, +,}
|
||||
>>> P = Polynom_deg2([0, 0, -2])
|
||||
>>> P.tbl_sgn()
|
||||
'\\tkzTabLine{, -, z, -,}'
|
||||
>>> print(P.tbl_sgn())
|
||||
\\tkzTabLine{, -, z, -,}
|
||||
>>> P = Polynom_deg2([1, 0, 1])
|
||||
>>> P.tbl_sgn()
|
||||
'\\tkzTabLine{, +,}'
|
||||
>>> print(P.tbl_sgn())
|
||||
\\tkzTabLine{, +,}
|
||||
>>> P = Polynom_deg2([-1, 0, -1])
|
||||
>>> P.tbl_sgn()
|
||||
'\\tkzTabLine{, -,}'
|
||||
>>> print(P.tbl_sgn())
|
||||
\\tkzTabLine{, -,}
|
||||
"""
|
||||
if self.delta.simplified() > 0:
|
||||
if self.a > 0:
|
||||
@ -116,8 +167,20 @@ class Polynom_deg2(Polynom):
|
||||
else:
|
||||
return "\\tkzTabLine{, -,}"
|
||||
|
||||
|
||||
def tbl_variation(self, limit = False):
|
||||
"""Return the variation line for tkzTabVar
|
||||
|
||||
:param limit: Display or not limits in tabular
|
||||
|
||||
>>> P = Polynom_deg2([1,1,1])
|
||||
|
||||
"""
|
||||
alpha = -self.b / (2*self.a)
|
||||
beta = self(alpha).simplied()
|
||||
|
||||
|
||||
|
||||
#\tkzTabVar{-/{}, +/{$f(-10)$}, -/{}}
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user