#!/usr/bin/env python # encoding: utf-8 from generic import Stack, flatten_list, expand_list from fraction import Fraction from render import txt_render, post2in_fix, tex_render class Expression(object): """A calculus expression. Today it can andle only expression with numbers later it will be able to manipulate unknown""" PRIORITY = {"*" : 3, "/": 3, "+": 2, "-":2, "(": 1} def __init__(self, exp): """ Initiate the expression :param exp: the expression. It can be a string or a list of tokens. It can be infix or postfix expression """ if type(exp) == str: self._exp = exp self.tokens = self.str2tokens(exp) # les tokens seront alors stockés dans self.tokens temporairement elif type(exp) == list: self.tokens = exp self._infix_tokens = None self._postfix_tokens = None self.feed_fix() # Determine le fix et range la liste dans self.[fix]_tokens ## --------------------- ## Mechanism functions def simplify(self, render = lambda x:str(x)): """ Generator which return steps for computing the expression @param render: function which render the list of token (postfix form now) """ if not self.can_go_further(): yield render(self.postfix_tokens) else: self.compute_exp() old_s = '' for s in self.steps: new_s = render(s) # Astuce pour éviter d'avoir deux fois la même étape (par exemple pour la transfo d'une division en fraction) if new_s != old_s: old_s = new_s yield new_s for s in self.child.simplify(render = render): if old_s != s: yield s def can_go_further(self): """Check whether it's a last step or not. If not create self.child the next expression. :returns: 1 if it's not the last step, 0 otherwise """ if len(self.tokens) == 1: return 0 else: return 1 def compute_exp(self): """ Create self.child with self.steps to go up to it """ self.steps = [self.postfix_tokens] tokenList = self.postfix_tokens.copy() tmpTokenList = [] while len(tokenList) > 2: # on va chercher les motifs du genre A B + pour les calculer if self.isNumber(tokenList[0]) and self.isNumber(tokenList[1]) and self.isOperator(tokenList[2]): # S'il y a une opération à faire op1 = tokenList[0] op2 = tokenList[1] token = tokenList[2] res = self.doMath(token, op1, op2) tmpTokenList.append(res) # Comme on vient de faire le calcul, on peut détruire aussi les deux prochains termes del tokenList[0:3] else: tmpTokenList.append(tokenList[0]) del tokenList[0] tmpTokenList += tokenList steps = expand_list(tmpTokenList) if len(steps[:-1]) > 0: self.steps += [flatten_list(s) for s in steps[:-1]] self.child = Expression(steps[-1]) ## --------------------- ## String parsing ## @classmethod ???? def str2tokens(self, exp): """ Parse the expression, ie tranform a string into a list of tokens :param exp: The expression (a string) :returns: list of token """ tokens = exp.split(" ") for (i,t) in enumerate(tokens): try: tokens[i] = int(t) except ValueError: pass return tokens # --------------------- # "fix" recognition @classmethod def get_fix(self, tokens): """ Give the "fix" of an expression [A, +, B] -> infix, or if there is parenthesis it is infix [+, A, B] -> prefix [A, B, +] -> postfix /!\ does not verify if the expression is correct/computable! :param exp: the expression (list of token) :returns: the "fix" (infix, postfix, prefix) """ if self.isOperator(tokens[0]): return "prefix" elif "(" in tokens: return "infix" elif not self.isOperator(tokens[0]) and not self.isOperator(tokens[1]): return "postfix" else: return "infix" def feed_fix(self): """ Recognize the fix of self.tokens and stock tokens in self.[fix]_tokens """ if len(self.tokens) > 1: fix = self.get_fix(self.tokens) else: fix = "postfix" # Completement arbitraire mais on s'en fiche! setattr(self, fix+"_tokens", self.tokens) # ---------------------- # Expressions - tokens manipulation @property def infix_tokens(self): """ Return infix list of tokens. Verify if it has already been computed and compute it if not :returns: infix list of tokens """ if self._infix_tokens: return self._infix_tokens elif self._postfix_tokens: self._infix_tokens = post2in_fix(self._postfix_tokens) return self._infix_tokens else: raise ValueError("Unkown fix") @infix_tokens.setter def infix_tokens(self, val): self._infix_tokens = val @property def postfix_tokens(self): """ Return postfix list of tokens. Verify if it has already been computed and compute it if not :returns: postfix list of tokens """ if self._postfix_tokens: return self._postfix_tokens elif self._infix_tokens: self._postfix_tokens = self.in2post_fix(self._infix_tokens) return self._postfix_tokens else: raise ValueError("Unkown fix") @postfix_tokens.setter def postfix_tokens(self, val): self._postfix_tokens = val # ---------------------- # "fix" tranformations @classmethod def in2post_fix(cls, infix_tokens): """ From the infix_tokens list compute the corresponding postfix_tokens list @param infix_tokens: the infix list of tokens to transform into postfix form. @return: the corresponding postfix list of tokens. >>> Expression.in2post_fix(['(', 2, '+', 5, '-', 1, ')', '/', '(', 3, '*', 4, ')']) [2, 5, '+', 1, '-', 3, 4, '*', '/'] """ opStack = Stack() postfixList = [] for token in infix_tokens: if token == "(": opStack.push(token) elif token == ")": topToken = opStack.pop() while topToken != "(": postfixList.append(topToken) topToken = opStack.pop() elif cls.isOperator(token): # On doit ajouter la condition == str sinon python ne veut pas tester l'appartenance à la chaine de caractère. while (not opStack.isEmpty()) and (cls.PRIORITY[opStack.peek()] >= cls.PRIORITY[token]): postfixList.append(opStack.pop()) opStack.push(token) else: postfixList.append(token) while not opStack.isEmpty(): postfixList.append(opStack.pop()) return postfixList ## --------------------- ## Computing the expression @staticmethod def doMath(op, op1, op2): """Compute "op1 op op2" or create a fraction :param op: operator :param op1: first operande :param op2: second operande :returns: string representing the result """ operations = {"+": "__add__", "-": "__sub__", "*": "__mul__"} if op == "/": ans = [Fraction(op1, op2)] ans += ans[0].simplify() return ans else: return getattr(op1,operations[op])(op2) ## --------------------- ## Recognize numbers and operators @staticmethod def isNumber(exp): """Check if the expression can be a number :param exp: an expression :returns: True if the expression can be a number and false otherwise """ return type(exp) == int or type(exp) == Fraction @staticmethod def isOperator(exp): """Check if the expression is an opération in "+-*/" :param exp: an expression :returns: boolean """ return (type(exp) == str and exp in "+-*/") def test(exp): a = Expression(exp) #for i in a.simplify(): #for i in a.simplify(render = txt_render): for i in a.simplify(render = tex_render): print(i) print("\n") if __name__ == '__main__': exp = "1 + 3 * 5" test(exp) #exp = "2 * 3 * 3 * 5" #test(exp) exp = "2 * 3 + 3 * 5" test(exp) exp = "2 * ( 3 + 4 ) + 3 * 5" test(exp) #exp = "2 * ( 3 + 4 ) + ( 3 - 4 ) * 5" #test(exp) # #exp = "2 * ( 2 - ( 3 + 4 ) ) + ( 3 - 4 ) * 5" #test(exp) # #exp = "2 * ( 2 - ( 3 + 4 ) ) + 5 * ( 3 - 4 )" #test(exp) # #exp = "2 + 5 * ( 3 - 4 )" #test(exp) #exp = "( 2 + 5 ) * ( 3 - 4 )" #test(exp) #exp = "( 2 + 5 ) * ( 3 * 4 )" #test(exp) exp = "( 2 + 5 - 1 ) / ( 3 * 4 )" test(exp) exp = "( 2 + 5 ) / ( 3 * 4 ) + 1 / 12" test(exp) exp = "( 2 + 5 ) / ( 3 * 4 ) + 1 / 2" test(exp) exp = "( 2 + 5 ) / ( 3 * 4 ) + 1 / 12 + 5 * 5" test(exp) import doctest doctest.testmod() # ----------------------------- # Reglages pour 'vim' # vim:set autoindent expandtab tabstop=4 shiftwidth=4: # cursor: 16 del