#!/usr/bin/env python # encoding: utf-8 from .arithmetic import gcd from .generic import isNumber, postfix_op from .operator import op from .expression import Expression from .explicable import Explicable from .step import Step from copy import copy __all__ = ['Fraction'] class Fraction(Explicable): """Fractions!""" def __init__(self, num, denom=1): """To initiate a fraction we need a numerator and a denominator :param num: the numerator :param denom: the denominator """ self._num = num if denom == 0: raise ZeroDivisionError("Can't create Fraction: division by zero") self._denom = denom self.isNumber = 1 pstf_tokens = self.compute_postfix_tokens() super(Fraction, self).__init__(pstf_tokens) def simplify(self): """Simplify the fraction :returns: steps to simplify the fraction or the fraction if there is nothing to do >>> f = Fraction(3, 6) >>> f.simplify() < Fraction 1 / 2> >>> for i in f.simplify().explain(): ... print(i) \\frac{ 3 }{ 6 } \\frac{ 1 \\times 3 }{ 2 \\times 3 } \\frac{ 1 }{ 2 } >>> f = Fraction(6,9) >>> f.simplify() < Fraction 2 / 3> >>> f.simplify().steps [< Step [6, 9, /]>, < Step [2, 3, *, 3, 3, *, /]>] >>> for i in f.simplify().explain(): ... print(i) \\frac{ 6 }{ 9 } \\frac{ 2 \\times 3 }{ 3 \\times 3 } \\frac{ 2 }{ 3 } >>> f = Fraction(0,3) >>> f.simplify() 0 """ ini_step = [Step(self.postfix_tokens)] if self._num == 0: return Expression([0]).simplify() elif isinstance(self._num, Fraction) or isinstance(self._denom, Fraction): return self._num / self._denom elif self._denom < 0: n_frac = Fraction(-self._num, -self._denom) ans = n_frac.simplify() ans.this_append_before(ini_step) return ans gcd_ = gcd(abs(self._num), abs(self._denom)) if gcd_ == self._denom: n_frac = self._num // gcd_ return Expression([n_frac]).simplify() elif gcd_ != 1: n_frac = Fraction(self._num // gcd_, self._denom // gcd_) ini_step += [Step([ n_frac._num, gcd_, op.mul, n_frac._denom, gcd_, op.mul, op.div ])] n_frac.this_append_before(ini_step) return n_frac else: return copy(self) def compute_postfix_tokens(self): """Postfix form of the fraction >>> f = Fraction(3, 5) >>> f.postfix_tokens [3, 5, /] """ if self._denom == 1: return [self._num] else: return [self._num, self._denom, op.div] def __str__(self): return str(Expression(self.postfix_tokens)) def __repr__(self): return "< Fraction {num} / {denom}>".format( num=self._num, denom=self._denom) def __float__(self): return self._num / self._denom def convert2fraction(self, other): """ Convert a other into a fraction """ if isinstance(other, Fraction): # cool number = other else: number = Fraction(other) return number def __add__(self, other): """ overload + >>> f = Fraction(1, 2) >>> g = Fraction(2, 3) >>> f + g < Fraction 7 / 6> >>> print("\\n".join([repr(i) for i in (f+g).steps])) < Step [1, 2, /, 2, 3, /, +]> < Step [1, 3, *, 2, 3, *, /, 2, 2, *, 3, 2, *, /, +]> < Step [3, 6, /, 4, 6, /, +]> < Step [3, 6, /, 4, 6, /, +]> < Step [3, 6, /, 4, 6, /, +]> < Step [3, 6, /, 4, 6, /, +]> < Step [3, 6, /, 4, 6, /, +]> < Step [3, 4, +, 6, /]> < Step [7, 6, /]> >>> f + 2 < Fraction 5 / 2> >>> print("\\n".join([repr(i) for i in (f+2).steps])) < Step [1, 2, /, 2, +]> < Step [1, 1, *, 2, 1, *, /, 2, 2, *, 1, 2, *, /, +]> < Step [1, 2, /, 4, 2, /, +]> < Step [1, 2, /, 4, 2, /, +]> < Step [1, 2, /, 4, 2, /, +]> < Step [1, 2, /, 4, 2, /, +]> < Step [1, 2, /, 4, 2, /, +]> < Step [1, 4, +, 2, /]> < Step [5, 2, /]> >>> f = Fraction(3, 4) >>> g = Fraction(5, 4) >>> f + g 2 >>> print("\\n".join([repr(i) for i in (f+g).steps])) < Step [3, 4, /, 5, 4, /, +]> < Step [3, 5, +, 4, /]> < Step [8, 4, /]> < Step [8, 4, /]> < Step [8, 4, /]> >>> f+0 < Fraction 3 / 4> >>> (f+0).steps [] """ if other == 0: return copy(self) number = self.convert2fraction(other) if self._denom == number._denom: com_denom = self._denom num1 = self._num num2 = number._num exp = Expression([num1, num2, op.add, com_denom, op.div]) else: gcd_denom = gcd(self._denom, number._denom) coef1 = number._denom // gcd_denom coef2 = self._denom // gcd_denom exp = Expression([self._num, coef1, op.mul, self._denom, coef1, op.mul, op.div, number._num, coef2, op.mul, number._denom, coef2, op.mul, op.div, op.add]) ans = exp.simplify() ini_step = Step(self.postfix_tokens + number.postfix_tokens + [op.add]) ans.this_append_before([ini_step]) return ans def __radd__(self, other): if other == 0: return Expression(self.postfix_tokens) number = self.convert2fraction(other) return number + self def __sub__(self, other): """ overload - >>> f = Fraction(1, 2) >>> g = Fraction(2, 3) >>> f - g < Fraction -1 / 6> >>> print("\\n".join([repr(i) for i in (f-g).steps])) < Step [1, 2, /, 2, 3, /, -]> < Step [1, 3, *, 2, 3, *, /, 2, 2, *, 3, 2, *, /, -]> < Step [3, 6, /, 4, 6, /, -]> < Step [3, 6, /, 4, 6, /, -]> < Step [3, 6, /, 4, 6, /, -]> < Step [3, 6, /, 4, 6, /, -]> < Step [3, 6, /, 4, 6, /, -]> < Step [3, 4, -, 6, /]> < Step [-1, 6, /]> >>> f - 0 < Fraction 1 / 2> >>> (f-0).steps [] """ if other == 0: return copy(self) number = self.convert2fraction(other) if self._denom == number._denom: com_denom = self._denom num1 = self._num num2 = number._num exp = Expression([num1, num2, op.sub, com_denom, op.div]) else: gcd_denom = gcd(self._denom, number._denom) coef1 = number._denom // gcd_denom coef2 = self._denom // gcd_denom exp = Expression([self._num, coef1, op.mul, self._denom, coef1, op.mul, op.div, number._num, coef2, op.mul, number._denom, coef2, op.mul, op.div, op.sub]) ini_step = Step(self.postfix_tokens + number.postfix_tokens + [op.sub]) ans = exp.simplify() ans.this_append_before([ini_step]) return ans def __rsub__(self, other): if other == 0: return copy(self) number = self.convert2fraction(other) return number - self def __neg__(self): """ overload - (as arity 1 operator) >>> f = Fraction(1, 2) >>> -f < Fraction -1 / 2> >>> (-f).steps [] >>> f = Fraction(1, -2) >>> f < Fraction 1 / -2> >>> -f < Fraction 1 / 2> >>> (-f).steps [< Step [-1, -2, /]>] """ f = Fraction(-self._num, self._denom) ans = f.simplify() return ans def __mul__(self, other): """ overload * >>> f = Fraction(1, 2) >>> g = Fraction(2, 3) >>> f*g < Fraction 1 / 3> >>> print("\\n".join([repr(i) for i in (f*g).steps])) < Step [1, 2, /, 2, 3, /, *]> < Step [1, 2, *, 2, 3, *, /]> < Step [1, 3, /]> < Step [1, 3, /]> >>> f * 0 0 >>> (f*0).steps [< Step [1, 2, /, 0, *]>] >>> f*1 < Fraction 1 / 2> >>> (f*1).steps [< Step [1, 2, /, 1, *]>] >>> f*4 2 >>> print("\\n".join([repr(i) for i in (f*4).steps])) < Step [1, 2, /, 4, *]> < Step [1, 2, *, 2, *, 1, 2, *, /]> < Step [1, 2, *, 1, /]> < Step [2, 1, /]> < Step [2, 1, /]> < Step [2]> """ steps = [Step([self, other, op.mul])] if other == 0: exp = Expression([0]) elif other == 1: exp = copy(self) elif isinstance(other, int): gcd1 = gcd(other, self._denom) if gcd1 != 1: num_s = [self._num] + \ [int(other / gcd1), op.mul] * (int(other / gcd1) != 1) + \ [gcd1, op.mul] denom_s = [int(self._denom / gcd1), gcd1, op.mul] steps.append(Step(num_s + denom_s + [op.div])) num = [self._num] + [int(other / gcd1), op.mul] * (int(other / gcd1) != 1) denom = [int(self._denom / gcd1)] else: num = [self._num, other, op.mul] denom = [self._denom] exp = Expression(num + denom + [op.div]) else: number = self.convert2fraction(other) gcd1 = gcd(self._num, number._denom) if gcd1 != 1: num1_s = [gcd1] + [int(self._num / gcd1), op.mul] * (int(self._num / gcd1) != 1) denom2_s = [gcd1] + [int(number._denom / gcd1), op.mul] * (int(number._denom / gcd1) != 1) num1 = [int(self._num / gcd1)] * (int(self._num / gcd1) != 1) denom2 = [int(number._denom / gcd1)] * (int(self._denom / gcd1) != 1) else: num1_s = [self._num] denom2_s = [number._denom] num1 = [self._num] denom2 = [number._denom] gcd2 = gcd(self._denom, number._num) if gcd2 != 1: num2_s = [gcd2] + [int(number._num / gcd2), op.mul] * (int(number._num / gcd2) != 1) denom1_s = [gcd2] + [int(self._denom / gcd2), op.mul] * (int(self._denom / gcd2) != 1) num2 = [int(number._num / gcd2)] * (int(number._num / gcd2) != 1) denom1 = [int(self._denom / gcd2)] * (int(number._denom / gcd2) != 1) else: num2_s = [number._num] denom1_s = [self._denom] num2 = [number._num] denom1 = [self._denom] steps.append(Step(num1_s + num2_s + [op.mul] + denom1_s + denom2_s + [op.mul, op.div])) exp = Expression(postfix_op(num1 + num2, op.mul, 1) + postfix_op(denom1 + denom2, op.mul, 1) + [op.div]) ans = exp.simplify() ans.steps = steps + ans.steps return ans def __rmul__(self, other): return self * other def __truediv__(self, other): """ overload / >>> f = Fraction(1,2) >>> g = Fraction(3,4) >>> f / 0 Traceback (most recent call last): ... ZeroDivisionError: division by zero >>> f / 1 < Fraction 1 / 2> >>> (f/1).steps [] >>> f / g < Fraction 2 / 3> """ if other == 0: raise ZeroDivisionError("division by zero") elif other == 1: return copy(self) number = self.convert2fraction(other) ini_step = Step(self.postfix_tokens + number.postfix_tokens + [op.div]) number = Fraction(number._denom, number._num) ans = self * number ans.this_append_before([ini_step]) return ans def __rtruediv__(self, other): number = self.convert2fraction(other) return number / self def __pow__(self, power): """ overload ** >>> f = Fraction(3, 4) >>> f**0 1 >>> (f**0).steps [< Step [3, 4, /, 0, ^]>] >>> f**1 < Fraction 3 / 4> >>> (f**1).steps [< Step [3, 4, /, 1, ^]>] >>> f**3 < Fraction 27 / 64> >>> print("\\n".join([repr(i) for i in (f**3).steps])) < Step [3, 4, /, 3, ^]> < Step [3, 3, ^, 4, 3, ^, /]> < Step [27, 64, /]> < Step [27, 64, /]> < Step [27, 64, /]> >>> f = Fraction(6, 4) >>> f**3 < Fraction 27 / 8> >>> print("\\n".join([repr(i) for i in (f**3).steps])) < Step [6, 4, /, 3, ^]> < Step [6, 3, ^, 4, 3, ^, /]> < Step [216, 64, /]> < Step [216, 64, /]> < Step [216, 64, /]> < Step [216, 64, /]> < Step [27, 8, *, 8, 8, *, /]> """ if not isinstance(power, int): raise ValueError( "Can't raise fraction to power {}".format( str(power))) ini_step = Step([self, power, op.pw]) if power == 0: exp = Expression([1]) elif power == 1: exp = copy(self) else: exp = Expression([ self._num, power, op.pw, self._denom, power, op.pw, op.div ]) ans = exp.simplify() ans.this_append_before([ini_step]) return ans def __xor__(self, power): """ overload ^ Work like ** >>> f = Fraction(3, 4) >>> f^0 1 >>> f^1 < Fraction 3 / 4> >>> f^3 < Fraction 27 / 64> """ return self.__pow__(power) def __abs__(self): return Fraction(abs(self._num), abs(self._denom)) def __eq__(self, other): """ == """ if isNumber(other): number = self.convert2fraction(other) return self._num * number._denom == self._denom * number._num else: return 0 def __lt__(self, other): """ < """ return float(self) < float(other) def __le__(self, other): """ <= """ return float(self) <= float(other) def __gt__(self, other): """ > """ return float(self) > float(other) def __ge__(self, other): """ >= """ return float(self) >= float(other) def __copy__(self): """ Copying the fraction removing steps where it is from """ return Fraction(self._num, self._denom) # ----------------------------- # Reglages pour 'vim' # vim:set autoindent expandtab tabstop=4 shiftwidth=4: # cursor: 16 del