#!/usr/bin/env python # encoding: utf-8 from generic import Stack def infixToPostfix(infixExp): """Transform an infix expression into postfix expression :param infixExp: an infix expression (caracters must be separate by a space) :returns: the corresponding postfix expression :Example: >>> infixToPostfix("1 + 2") '1 2 +' >>> infixToPostfix("1 * 2 + 3") '1 2 * 3 +' """ priority = {"*" : 3, "/": 3, "+": 2, "-":2, "(": 1} opStack = Stack() postfixList = [] tokenList = infixExp.split(" ") for token in tokenList: if token == "(": opStack.push(token) elif token == ")": topToken = opStack.pop() while topToken != "(": postfixList.append(topToken) topToken = opStack.pop() elif token in "+-*/": while (not opStack.isEmpty()) and (priority[opStack.peek()] >= priority[token]): postfixList.append(opStack.pop()) opStack.push(token) else: postfixList.append(token) while not opStack.isEmpty(): postfixList.append(opStack.pop()) return " ".join(postfixList) def computePostfix(postfixExp): """Compute a postfix expression :param postfixExp: a postfix expression :returns: the result of the expression """ print(postfixToInfix(postfixExp)) # where to save numbers or operandeStack = Stack() tokenList = postfixExp.split(" ") for (i,token) in enumerate(tokenList): if token in "+-*/": op2 = operandeStack.pop() op1 = operandeStack.pop() res = doMath(token, op1, op2) operandeStack.push(res) #print("Operation: {op1} {op} {op2}".format(op1 = op1, op = token, op2 = op2)) #print(operandeStack) #print(tokenList[i+1:]) newPostfix = " ".join(operandeStack + tokenList[i+1:]) print(postfixToInfix(newPostfix)) else: operandeStack.push(token) return operandeStack.pop() def computePostfixBis(postfixExp): """Compute a postfix expression like a good student :param postfixExp: a postfix expression :returns: the result of the expression """ print(postfixExp) print(postfixToInfix(postfixExp)) # where to save numbers or operandeStack = Stack() tokenList = postfixExp.split(" ") steps = [] # On fait le calcul jusqu'à n'avoir plus qu'un élément while len(tokenList) > 1: tmpTokenList = [] # on va chercher les motifs du genre A B + pour les calculer while len(tokenList) > 2: if isNumber(tokenList[0]) and isNumber(tokenList[1]) and tokenList[2] in "+-*/": # S'il y a une opération à faire op1 = tokenList[0] op2 = tokenList[1] token = tokenList[2] res = doMath(token, op1, op2) tmpTokenList.append(res) # Comme on vient de faire le calcul, on peut détruire aussi les deux prochains termes del tokenList[0:3] else: tmpTokenList.append(tokenList[0]) del tokenList[0] tmpTokenList += tokenList steps += expand_list(tmpTokenList) #print("----- Steps -----") #print(steps) tokenList = steps[-1] #print(postfixToInfix(tokenList)) return steps def isNumber(exp): """Check if the expression can be a number :param exp: an expression :returns: True if the expression can be a number and false otherwise """ return type(exp) == int or type(exp) == "Fraction" def isOperation(exp): """Check if the expression is an opération in "+-*/" :param exp: an expression :returns: boolean """ return (type(exp) == str and exp in "+-*/") def doMath(op, op1, op2): """Compute "op1 op op2" :param op: operator :param op1: first operande :param op2: second operande :returns: string representing the result """ return str(eval(op1 + op + op2)) def postfixToInfix(postfixExp): """Transforme postfix expression into infix expression :param postfixExp: a postfix expression :returns: the corresponding infix expression """ operandeStack = Stack() tokenList = postfixExp.split(" ") for (i,token) in enumerate(tokenList): if token in "+-*/": op2 = operandeStack.pop() if needPar(op2, token, "after"): op2 = "( " + op2 + " )" op1 = operandeStack.pop() if needPar(op1, token, "before"): op1 = "( " + op1 + " )" res = "{op1} {op} {op2}".format(op1 = op1, op = token, op2 = op2) operandeStack.push(res) else: operandeStack.push(token) return operandeStack.pop() def needPar(operande, operator, posi = "after"): """Says whether or not the operande needs parenthesis :param operande: the operande :param operator: the operator :param posi: "after"(default) if the operande will be after the operator, "before" othewise :returns: bollean """ priority = {"*" : 3, "/": 3, "+": 2, "-":2} if type(operande)==int and operande < 0: return 1 elif not isNumber(operande): # Si c'est une grande expression ou un chiffre négatif stand_alone = get_main_op(operande) # Si la priorité de l'operande est plus faible que celle de l'opérateur debug_var("stand_alone",stand_alone) debug_var("operande", type(operande)) minor_priority = priority[get_main_op(operande)] < priority[operator] # Si l'opérateur est -/ pour after ou juste / pour before special = (operator in "-/" and posi == "after") or (operator in "/" and posi == "before") return stand_alone and (minor_priority or special) else: return 0 def get_main_op(exp): """Getting the main operation of the expression :param exp: the expression :returns: the main operation (+, -, * or /) or 0 if the expression is only one element """ priority = {"*" : 3, "/": 3, "+": 2, "-":2} parStack = Stack() tokenList = exp.split(" ") if len(tokenList) == 1: # Si l'expression n'est qu'un élément return 0 main_op = [] for token in tokenList: if token == "(": parStack.push(token) elif token == ")": parStack.pop() elif token in "+-*/" and parStack.isEmpty(): main_op.append(token) return min(main_op, key = lambda s: priority[s]) def expand_list(list_list): """Expand list of list :param list: the list to expande :returns: list of expanded lists :Example: >>> expand_list([1,2,[3,4],5,[6,7,8]]) [[1, 2, 3, 5, 6], [1, 2, 4, 5, 7], [1, 2, 4, 5, 8]] >>> expand_list([1,2,4,5,6,7,8]) [[1, 2, 4, 5, 6, 7, 8]] """ list_in_list = [i for i in list_list if type(i) == list].copy() try: nbr_ans_list = max([len(i) for i in list_in_list]) ans = [list_list.copy() for i in range(nbr_ans_list)] for (i,l) in enumerate(ans): for (j,e) in enumerate(l): if type(e) == list: ans[i][j] = e[min(i,len(e)-1)] # S'il n'y a pas eut d'étapes intermédiaires (2e exemple) except ValueError: ans = [list_list] return ans def print_steps(steps): """Juste print a list :param steps: @todo :returns: @todo """ print("{first} \t = {sec}".format(first = steps[-1], sec = steps[-2])) for i in steps[-2:0:-1]: print("\t\t = ",i) def debug_var(name, var): """print the name of the variable and the value :param name: the name of the variable :param var: the variable we want information """ print(name, ": ", var) def test(exp): """Make various test on an expression """ print("-------------") print("Expression ",exp) postfix = infixToPostfix(exp) #print("Postfix " , postfix) #print(computePostfix(postfix)) #print("Bis") steps = computePostfixBis(postfix) print_steps(steps) #print(postfixToInfix(postfix)) #print(get_main_op(exp)) if __name__ == '__main__': exp = "1 + 3 * 5" test(exp) #exp = "2 * 3 * 3 * 5" #test(exp) #exp = "2 * 3 + 3 * 5" #test(exp) #exp = "2 * ( 3 + 4 ) + 3 * 5" #test(exp) # #exp = "2 * ( 3 + 4 ) + ( 3 - 4 ) * 5" #test(exp) # #exp = "2 * ( 2 - ( 3 + 4 ) ) + ( 3 - 4 ) * 5" #test(exp) # #exp = "2 * ( 2 - ( 3 + 4 ) ) + 5 * ( 3 - 4 )" #test(exp) # #exp = "2 + 5 * ( 3 - 4 )" #test(exp) # #exp = "( 2 + 5 ) * ( 3 - 4 )" #test(exp) # #exp = "( 2 + 5 ) * ( 3 * 4 )" #test(exp) exp = "( 2 + 5 - 1 ) / ( 3 * 4 )" test(exp) exp = "( 2 + 5 ) / ( 3 * 4 ) + 1 / 12" test(exp) exp = "( 2 + 5 ) / ( 3 * 4 ) + 1 / 2" test(exp) exp = "( 2 + 5 ) / ( 3 * 4 ) + 1 / 12 + 5 * 5" test(exp) #print(expand_list([1,2,['a','b','c'], 3, ['d','e']])) ## Ce denier pose un soucis. Pour le faire marcher il faudrai implémenter le calcul avec les fractions #exp = "( 2 + 5 ) / 3 * 4" #test(exp) #import doctest #doctest.testmod() # ----------------------------- # Reglages pour 'vim' # vim:set autoindent expandtab tabstop=4 shiftwidth=4: # cursor: 16 del