#!/usr/bin/env python # encoding: utf-8 from .generic import Stack, flatten_list, expand_list, isNumber, isOperator from .render import txt, tex from .str2tokens import str2tokens from .operator import op __all__ = ['Expression'] class Expression(object): """A calculus expression. Today it can andle only expression with numbers later it will be able to manipulate unknown""" STR_RENDER = tex DEFAULT_RENDER = tex @classmethod def set_render(cls, render): cls.STR_RENDER = render @classmethod def set_default_render(cls): cls.set_render(cls.DEFAULT_RENDER) def __init__(self, exp): """ Initiate the expression :param exp: the expression. It can be a string or a list of postfix tokens. """ if type(exp) == str: #self._exp = exp self.postfix_tokens = str2tokens(exp) # les tokens seront alors stockés dans self.tokens temporairement elif type(exp) == list: self.postfix_tokens = flatten_list([tok.postfix_tokens if self.isExpression(tok) else tok for tok in exp]) self._isExpression = 1 def __str__(self): """ Overload str If you want to changer render set Expression.RENDER """ return self.STR_RENDER(self.postfix_tokens) def __repr__(self): return "< Expression " + str(self.postfix_tokens) + ">" def render(self, render = lambda x:str(x)): """ Same as __str__ but accept render as argument :param render: function which render the list of token (postfix form) to string """ # TODO: I don't like the name of this method |ven. janv. 17 12:48:14 CET 2014 return render(self.postfix_tokens) ## --------------------- ## Mechanism functions def simplify(self): """ Generator which return steps for computing the expression """ if not self.can_go_further(): yield self.STR_RENDER(self.postfix_tokens) else: self.compute_exp() old_s = '' for s in self.steps: new_s = self.STR_RENDER(s) # Astuce pour éviter d'avoir deux fois la même étape (par exemple pour la transfo d'une division en fraction) if new_s != old_s: old_s = new_s yield new_s for s in self.child.simplify(): if old_s != s: yield s def simplified(self): """ Get the simplified version of the expression """ if not self.can_go_further(): return self.postfix_tokens[0] else: return self.child.simplified() def can_go_further(self): """Check whether it's a last step or not. If not create self.child the next expression. :returns: 1 if it's not the last step, 0 otherwise """ if len(self.postfix_tokens) == 1: return 0 else: return 1 def compute_exp(self): """ Create self.child with self.steps to go up to it """ self.steps = [self.postfix_tokens] tokenList = self.postfix_tokens.copy() tmpTokenList = [] while len(tokenList) > 2: # on va chercher les motifs du genre A B +, quand l'operateur est d'arité 2, pour les calculer if isNumber(tokenList[0]) and isNumber(tokenList[1]) \ and isOperator(tokenList[2]) and tokenList[2].arity == 2 : # S'il y a une opération à faire op1 = tokenList[0] op2 = tokenList[1] operator = tokenList[2] res = operator(op1, op2) tmpTokenList.append(res) # Comme on vient de faire le calcul, on peut détruire aussi les deux prochains termes del tokenList[0:3] # Et les motifs du gens A -, quand l'operateur est d'arité 1 elif isNumber(tokenList[0]) \ and isOperator(tokenList[1]) and tokenList[1].arity == 1: # S'il y a une opération à faire op1 = tokenList[0] operator = tokenList[1] res = operator(op1) tmpTokenList.append(res) # Comme on vient de faire le calcul, on peut détruire aussi les deux prochains termes del tokenList[0:2] else: tmpTokenList.append(tokenList[0]) del tokenList[0] tmpTokenList += tokenList steps = expand_list(tmpTokenList) if len(steps[:-1]) > 0: self.steps += [flatten_list(s) for s in steps[:-1]] self.child = Expression(steps[-1]) def isExpression(self, other): try: other._isExpression except AttributeError: return 0 return 1 # ----------- # Expression act as container from self.postfix_tokens def __getitem__(self, index): return self.postfix_tokens[index] def __setitem__(self, index, value): self.postfix_tokens[index] = value # ----------- # Some math manipulations def operate(self, other, operator): if type(other) == Expression: return Expression(self.postfix_tokens + other.postfix_tokens + [operator]) elif type(other) == list: return Expression(self.postfix_tokens + other + [operator]) else: return Expression(self.postfix_tokens + [other] + [operator]) def roperate(self, other, operator): if type(other) == Expression: return Expression(other.postfix_tokens + self.postfix_tokens + [operator]) elif type(other) == list: return Expression(other + self.postfix_tokens + [operator]) else: return Expression([other] + self.postfix_tokens + [operator]) def __add__(self, other): return self.operate(other, op.add) def __radd__(self, other): return self.roperate(other, op.add) def __sub__(self, other): return self.operate(other, op.sub) def __rsub__(self, other): return self.roperate(other, op.sub) def __mul__(self, other): return self.operate(other, op.mul) def __rmul__(self, other): return self.roperate(other, op.mul) def __div__(self, other): return self.operate(other, op.div) def __rdiv__(self, other): return self.roperate(other, op.div) def __pow__(self, other): return self.operate(other, op.pow) def __neg__(self): return Expression(self.postfix_tokens + [op.sub1]) def test(exp): a = Expression(exp) print(a) for i in a.simplify(): print(i) print(type(a.simplified()), ":", a.simplified()) print("\n") if __name__ == '__main__': Expression.set_render(txt) exp1 = "2 ^ 3 * 5" test(exp1) Expression.set_render(tex) test(exp1) from pymath.operator import op exp = [2, 3, op.pw, 5, op.mul] test(exp) Expression.set_render(txt) test([Expression(exp1), Expression(exp), op.add]) exp = "1 + 3 * 5" e = Expression(exp) f = -e print(f) #exp = "2 * 3 * 3 * 5" #test(exp) #exp = "2 * 3 + 3 * 5" #test(exp) #exp = "2 * ( 3 + 4 ) + 3 * 5" #test(exp) #exp = "2 * ( 3 + 4 ) + ( 3 - 4 ) * 5" #test(exp) # #exp = "2 * ( 2 - ( 3 + 4 ) ) + ( 3 - 4 ) * 5" #test(exp) # #exp = "2 * ( 2 - ( 3 + 4 ) ) + 5 * ( 3 - 4 )" #test(exp) # #exp = "2 + 5 * ( 3 - 4 )" #test(exp) #exp = "( 2 + 5 ) * ( 3 - 4 )^4" #test(exp) #exp = "( 2 + 5 ) * ( 3 * 4 )" #test(exp) #exp = "( 2 + 5 - 1 ) / ( 3 * 4 )" #test(exp) #exp = "( 2 + 5 ) / ( 3 * 4 ) + 1 / 12" #test(exp) #exp = "( 2+ 5 )/( 3 * 4 ) + 1 / 2" #test(exp) #exp="(-2+5)/(3*4)+1/12+5*5" #test(exp) #exp="-2*4(12 + 1)(3-12)" #test(exp) #exp="(-2+5)/(3*4)+1/12+5*5" #test(exp) # TODO: The next one doesn't work |ven. janv. 17 14:56:58 CET 2014 #exp="-2*(-a)(12 + 1)(3-12)" #e = Expression(exp) #print(e) ## Can't handle it yet!! #exp="-(-2)" #test(exp) #import doctest #doctest.testmod() # ----------------------------- # Reglages pour 'vim' # vim:set autoindent expandtab tabstop=4 shiftwidth=4: # cursor: 16 del