#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2017 lafrite # # Distributed under terms of the MIT license. """ Tokens representing polynomials functions """ from ..expression import Expression from .token import Token from . import to_be_token from ...core.MO import MO from ...core.MO.atoms import moify from ...core.MO.polynomial import MOpolynomial __all__ = ["Polynomial", "Quadratic", "Linear"] class Polynomial(Token): """ Token representing a polynomial :examples: >>> from ...core.MO.polynomial import MOpolynomial >>> P = Polynomial(MOpolynomial('x', [1, 2, 3])) >>> P """ def __init__(self, a, name="", ancestor=None): """ Initiate Polynomial with a MO""" if not isinstance(a, MO): raise TypeError Token.__init__(self, a, name, ancestor) self._mathtype = "polynome" @classmethod def from_mo(cls, mo, name="", ancestor=None): return cls(mo, name, ancestor) @classmethod def from_coefficients(cls, coefficients, variable_name="x", name=""): """ Initiate polynomial from list of coefficients :examples: >>> P = Polynomial.from_coefficients([1, 2, 3]) >>> P >>> P = Polynomial.from_coefficients([1, 2, -3]) >>> P >>> P = Polynomial.from_coefficients([1, 2, 3], "y") >>> P """ return cls(MOpolynomial(variable_name, coefficients), name) @classmethod def random(cls): raise NotImplementedError @property def raw(self): raise NotImplementedError("Polynomial does not exists in python") def __setitem__(self, key, item): """ Use Polynomial like if they were a dictionnary to set coefficients """ raise NotImplementedError("Can't set coefficient of a polynomial") @to_be_token def __getitem__(self, key): """ Use Polynomial like if they were a dictionnary to get coefficients :examples: >>> from ...core.MO.polynomial import MOpolynomial >>> P = Polynomial(MOpolynomial('x', [1, 2, 3])) >>> P[0] >>> P[1] >>> P[2] >>> P[3] Traceback (most recent call last): ... KeyError: 3 """ return self._mo.coefficients[key] def __call__(self, value): """ Call a Polynomial to evaluate itself on value :examples: >>> from ...core.MO.polynomial import MOpolynomial >>> P = Polynomial(MOpolynomial('x', [1, 2, 3])) >>> for s in P(2).explain(): ... print(s) 3 * 2^2 + 2 * 2 + 1 3 * 4 + 4 + 1 12 + 5 17 """ return Expression(self._mo.tree)(value) def differentiate(self): """ Differentiate a polynome :example: >>> from ...core.MO.polynomial import MOpolynomial >>> P = Polynomial(MOpolynomial('x', [1, 2, 3])) >>> P >>> P.differentiate() >>> for s in P.differentiate().explain(): ... print(s) 0 + 2 + 3 * 2x 2 + 3 * 2 * x 6x + 2 """ return Expression(self._mo.differentiate()).simplify() @property def roots(self): """ Get roots of the Polynomial """ raise NotImplementedError("Can't compute roots not specific polynomial") class Linear(Polynomial): """ Token representing a linear ax + b :examples: >>> from ...core.MO.polynomial import MOpolynomial, MOMonomial >>> P = Linear(MOpolynomial('x', [1, 2])) >>> P >>> P.a >>> P.b >>> P.differentiate() >>> P.roots [] """ def __init__(self, mo, name="", ancestor=None): """ Initiate Linear with MO :examples: >>> from ...core.MO.polynomial import MOpolynomial, MOMonomial >>> P = Linear(MOpolynomial('x', [1, 2])) >>> P >>> Q = Linear(MOMonomial(3, 'x', 1)) >>> Q """ Polynomial.__init__(self, mo, name, ancestor) self._mathtype = "affine" @classmethod def random(cls): raise NotImplementedError @property @to_be_token def a(self): return self[1] @property @to_be_token def b(self): return self[0] @property @to_be_token def roots(self): """ Get the root of the polynomial :examples: >>> from ...core.MO.polynomial import MOpolynomial, MOMonomial >>> P = Linear(MOpolynomial('x', [1, 2])) >>> P.roots [] >>> #P = Linear(MOpolynomial('x', [1, -2])) >>> #P.roots """ try: return [Expression.from_str(f"-{self.a}/{self.b}").simplify()] except AttributeError: return [Expression.from_str(f"-{self.a}/{self.b}")] class Quadratic(Polynomial): """ Token representing a quadratic ax^2 + bx + c :examples: >>> from ...core.MO.polynomial import MOpolynomial >>> P = Quadratic(MOpolynomial('x', [1, 2, 3])) >>> P >>> P.a >>> P.b >>> P.c >>> P.delta >>> for s in P.delta.explain(): ... print(s) 2^2 - 4 * 3 * 1 4 - 12 * 1 4 - 12 - 8 >>> P.differentiate() >>> P.roots [] """ def __init__(self, mo, name="", ancestor=None): """ Initiate Quadratic from MO >>> from ...core.MO.polynomial import MOpolynomial >>> P = Quadratic(MOpolynomial('x', [1, 2, 3])) >>> P """ Polynomial.__init__(self, mo, name, ancestor) self._mathtype = "polynome du 2nd degré" @classmethod def random(cls): raise NotImplementedError @property @to_be_token def a(self): try: return self[2] except KeyError: return 0 @property @to_be_token def b(self): try: return self[1] except KeyError: return 0 @property @to_be_token def c(self): try: return self[0] except KeyError: return 0 @property @to_be_token def delta(self): return Expression.from_str(f"{self.b}^2-4*{self.a}*{self.c}").simplify() @property @to_be_token def roots(self): """ Roots of the polynom :example: >>> from ...core.MO.polynomial import MOpolynomial >>> P = Quadratic(MOpolynomial('x', [1, 0, 1])) >>> P.roots [] >>> P = Quadratic(MOpolynomial('x', [4, -4, 1])) >>> P.roots [] >>> P = Quadratic(MOpolynomial('x', [1, 0, -1])) >>> P.roots [, ] """ if self.delta._mo < 0: return [] elif self.delta._mo == 0: # return [Expression.from_str(f"-{self.b}/(2*{self.a})").simplify()] return [round(eval(f"-{self.b}/(2*{self.a})"), 2)] else: from math import sqrt roots = [ str(eval(f"(-{self.b}-sqrt({self.delta}))/(2*{self.a})")), str(eval(f"(-{self.b}+sqrt({self.delta}))/(2*{self.a})")), ] roots.sort() return roots # ----------------------------- # Reglages pour 'vim' # vim:set autoindent expandtab tabstop=4 shiftwidth=4: # cursor: 16 del