Bertrand Benjamin
27e7dcba20
All checks were successful
continuous-integration/drone/push Build is passing
92 lines
2.9 KiB
Python
92 lines
2.9 KiB
Python
# /usr/bin/env python
|
|
# -*- coding:Utf-8 -*-
|
|
|
|
from random import randint, uniform, gauss, choice
|
|
|
|
|
|
def random_generator(
|
|
length,
|
|
distrib=gauss,
|
|
rd_args=(0, 1),
|
|
nbr_format=lambda x: round(x, 2),
|
|
v_min=None,
|
|
v_max=None,
|
|
exact_mean=None,
|
|
):
|
|
""" Generate a random list of value
|
|
|
|
:param length: length of the dataset
|
|
:param distrib: Distribution of the data set. It can be a function or string from ["randint", "uniform", "gauss", "choice"]
|
|
:param rd_args: arguments to pass to distrib
|
|
:param nbr_format: function which format value
|
|
:param v_min: minimum accepted value
|
|
:param v_max: maximum accepted value
|
|
:param exact_mean: if set, the last generated number will be create in order that the computed mean is exacly equal to "exact_mean"
|
|
|
|
>>> random_generator(10) # doctest: +SKIP
|
|
[-0.76, 0.46, 0.19, 0.08, -1.13, -0.5, 0.47, -2.11, 0.16, -1.05]
|
|
>>> random_generator(10, distrib = uniform, rd_args = (5, 10)) # doctest: +SKIP
|
|
[9.01, 5.32, 5.59, 8.8, 7.36, 6.9, 6.05, 7.44, 9.47, 6.95]
|
|
>>> random_generator(10, distrib = "uniform", rd_args = (5, 10)) # doctest: +SKIP
|
|
[7.85, 9.01, 5.32, 5.59, 8.8, 7.36, 6.9, 6.05, 7.44, 9.47]
|
|
>>> random_generator(10, v_min = 0) # doctest: +SKIP
|
|
[0.46, 0.19, 0.08, 0.47, 0.16, 0.87, 0.17, 1.79, 0.19, 1.12]
|
|
>>> random_generator(10, exact_mean = 0) # doctest: +SKIP
|
|
[-0.76, 0.46, 0.19, 0.08, -1.13, -0.5, 0.47, -2.11, 0.16, 3.14]
|
|
>>> random_generator(10, distrib = gauss, rd_args = (50,20), nbr_format = int) # doctest: +SKIP
|
|
[34, 59, 53, 51, 27, 40, 59, 7, 53, 28]
|
|
|
|
"""
|
|
# if exact_mean is set, we create automaticaly only length-1 value
|
|
if exact_mean is not None:
|
|
length = length - 1
|
|
|
|
# build function to test created values
|
|
if v_min is None:
|
|
v1 = lambda x: True
|
|
else:
|
|
v1 = lambda x: x >= v_min
|
|
if v_max is None:
|
|
v2 = lambda x: True
|
|
else:
|
|
v2 = lambda x: x <= v_max
|
|
validate = lambda x: v1(x) and v2(x)
|
|
|
|
# get distrib function
|
|
distribs = {
|
|
"gauss": gauss,
|
|
"uniform": uniform,
|
|
"randint": randint,
|
|
"choice": choice,
|
|
}
|
|
try:
|
|
distrib(*rd_args)
|
|
except TypeError:
|
|
distrib = distribs[distrib]
|
|
|
|
# building values
|
|
data = []
|
|
for _ in range(length):
|
|
valid = False
|
|
while not valid:
|
|
v = nbr_format(distrib(*rd_args))
|
|
valid = validate(v)
|
|
data.append(v)
|
|
|
|
# Build last value
|
|
if exact_mean is not None:
|
|
last_v = nbr_format((length + 1) * exact_mean - sum(data))
|
|
if not validate(last_v):
|
|
raise ValueError(
|
|
"Can't build the last value. Conflict between v_min/v_max and exact_mean"
|
|
)
|
|
data.append(last_v)
|
|
|
|
return data
|
|
|
|
|
|
# -----------------------------
|
|
# Reglages pour 'vim'
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
# cursor: 16 del
|