213 lines
5.7 KiB
Python
213 lines
5.7 KiB
Python
#/usr/bin/env python
|
|
# -*- coding:Utf-8 -*-
|
|
|
|
#
|
|
#
|
|
# Ensemble de fonction rendant beaucoup plus pratique la résolution et l'élaboration des exercices de stat au lycée
|
|
#
|
|
#
|
|
|
|
from math import sqrt, ceil
|
|
from collections import Counter
|
|
from .dataset import Dataset
|
|
from ..calculus.generic import flatten_list
|
|
|
|
|
|
class WeightedDataset(dict):
|
|
""" A weighted dataset with statistics and latex rendering methods
|
|
|
|
>>> w = WeightedDataset([1, 2, 3, 4], "Enfants", [10, 11, 12, 13])
|
|
>>> print(w)
|
|
{1: 10, 2: 11, 3: 12, 4: 13}
|
|
>>> w.effectif_total()
|
|
46
|
|
>>> w.sum()
|
|
120
|
|
>>> w.mean()
|
|
2.608695652173913
|
|
>>> w.deviation()
|
|
56.95652173913044
|
|
>>> w.variance()
|
|
1.2381852551984878
|
|
>>> w.sd()
|
|
1.1127377297451937
|
|
|
|
"""
|
|
|
|
def __init__(self, datas = [], data_name = "Valeurs", weights = [], weight_name = "Effectifs"):
|
|
"""
|
|
Initiate the WeightedDataset
|
|
"""
|
|
if datas and not weights:
|
|
weightedDatas = Counter(datas)
|
|
elif datas and weights:
|
|
if len(datas) != len(weights):
|
|
raise ValueError("Datas and weights should have same length")
|
|
else:
|
|
weightedDatas = {i[0]:i[1] for i in zip(datas, weights)}
|
|
|
|
dict.__init__(self, weightedDatas)
|
|
|
|
self.data_name = data_name
|
|
self.weight_name = weight_name
|
|
|
|
def add_data(self, data, weight = 1):
|
|
try:
|
|
self[data] += weight
|
|
except KeyError:
|
|
self[data] = weight
|
|
|
|
def total_weight(self):
|
|
return sum(self.values())
|
|
|
|
def effectif_total(self):
|
|
return self.total_weight()
|
|
|
|
def sum(self):
|
|
""" Not really a sum but the sum of the product of key and values """
|
|
return sum([k*v for (k,v) in self.items()])
|
|
|
|
def mean(self):
|
|
return self.sum()/self.effectif_total()
|
|
|
|
def deviation(self):
|
|
""" Compute the deviation (not normalized) """
|
|
mean = self.mean()
|
|
return sum([v*(k - mean)**2 for (k,v) in self.items()])
|
|
|
|
def variance(self):
|
|
return self.deviation()/self.effectif_total()
|
|
|
|
def sd(self):
|
|
""" Compute the standard deviation """
|
|
return sqrt(self.variance())
|
|
|
|
def quartiles(self):
|
|
"""
|
|
Calcul les quartiles de la série.
|
|
|
|
:return: un tuple avec (min, Q1, Me, Q3, Max)
|
|
|
|
: Exemple:
|
|
|
|
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(5)]))
|
|
>>> w.quartiles()
|
|
(1, 2, 3.0, 4, 4)
|
|
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(6)]))
|
|
>>> w.quartiles()
|
|
(1, 3, 4, 5, 5)
|
|
|
|
"""
|
|
return (min(self.keys()) , self.quartile(1) , self.quartile(2) , self.quartile(3), max(self.keys()))
|
|
|
|
def quartile(self, quartile = 1):
|
|
"""
|
|
Calcul un quartile de la série.
|
|
|
|
:param quartile: quartile à calculer (par defaut 1 -> Q1)
|
|
|
|
:return: le quartile demandé
|
|
|
|
: Example:
|
|
|
|
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(5)]))
|
|
>>> w.quartile(1)
|
|
2
|
|
>>> w.quartile(2)
|
|
3.0
|
|
>>> w.quartile(3)
|
|
4
|
|
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(6)]))
|
|
>>> w.quartile(1)
|
|
3
|
|
>>> w.quartile(2)
|
|
4
|
|
>>> w.quartile(3)
|
|
5
|
|
|
|
"""
|
|
# -1 to match with list indexing
|
|
position = self.posi_quartile(quartile) - 1
|
|
expanded_values = flatten_list([v*[k] for (k,v) in self.items()])
|
|
if position.is_integer():
|
|
return (expanded_values[int(position)] + expanded_values[int(position)+1])/2
|
|
else:
|
|
return expanded_values[ceil(position)]
|
|
|
|
def posi_quartile(self, quartile = 1):
|
|
"""
|
|
Calcul la position du quartile
|
|
|
|
:param quartile: le quartile concerné
|
|
|
|
:return : la position du quartile (arondis à l'entier suppérieur, non arrondis)
|
|
"""
|
|
return quartile * self.effectif_total() / 4
|
|
|
|
|
|
# --------------------------
|
|
# Rendu latex
|
|
|
|
def tabular_latex(self):
|
|
""" Renvoie le code latex pour afficher le tableau
|
|
|
|
:return : le code latex pour afficher le tableau
|
|
"""
|
|
latex = "\\begin{{center}} \n \t \\begin{{tabular}}{{|c|*{{{nbr_col}}}{{c|}}}} \n".format(nbr_col = len(self.serie))
|
|
latex += "\t\t \hline \n"
|
|
latex += "\t\t {val_name} ".format(val_name = self.val_name)
|
|
eff_ligne = "\t\t {eff_name} ".format(eff_name = self.eff_name)
|
|
|
|
for (v,e) in self.serieCouple:
|
|
latex += "& {val:.2f} ".format(val = v)
|
|
eff_ligne += "& {eff:.2f} ".format(eff = e)
|
|
|
|
latex += "\\\\ \hline \n"
|
|
latex += eff_ligne + " \\\\ \hline \n"
|
|
latex += "\t \\end{tabular} \n \\end{center}"
|
|
|
|
return latex
|
|
|
|
if __name__ == '__main__':
|
|
valeurs = [65, 75, 85, 95, 105, 115, 125, 135]
|
|
valeurs.sort()
|
|
print(valeurs)
|
|
effectifs = [ 15, 2, 21, 24, 12, 9, 5, 2]
|
|
|
|
|
|
s = Serie()
|
|
|
|
s.set_values(valeurs, effectifs)
|
|
print(s.effectif_total)
|
|
|
|
print(s.valeurs)
|
|
print(s.effectifs)
|
|
print(s.serie)
|
|
|
|
# print(s.tabular_latex())
|
|
|
|
# print("Moyenne ", s.moyenne())
|
|
# print(s.variance())
|
|
# print(s.ecart_type())
|
|
|
|
print("\n-----------------------\n")
|
|
print(s.moyenne_latex())
|
|
print("\n-----------------------\n")
|
|
print(s.variance_latex())
|
|
print("\n-----------------------\n")
|
|
print(s.ecart_type_latex())
|
|
|
|
# print(s.quartiles())
|
|
print("\n-----------------------\n")
|
|
print(s.quartile_latex())
|
|
print(s.quartile_latex(1))
|
|
print(s.quartile_latex(3))
|
|
|
|
|
|
|
|
# -----------------------------
|
|
# Reglages pour 'vim'
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
# cursor: 16 del
|
|
|