Mapytex/pymath/calculus/fraction.py
2016-03-22 08:39:20 +03:00

559 lines
16 KiB
Python

#!/usr/bin/env python
# encoding: utf-8
from .arithmetic import gcd
from .generic import isNumber, postfix_op
from .operator import op
from .expression import Expression
from .explicable import Explicable
from .step import Step
from copy import copy
__all__ = ['Fraction']
class Fraction(Explicable):
"""Fractions!"""
def __init__(self, num, denom=1):
"""To initiate a fraction we need a numerator and a denominator
:param num: the numerator
:param denom: the denominator
"""
self._num = num
if denom == 0:
raise ZeroDivisionError("Can't create Fraction: division by zero")
self._denom = denom
self.isNumber = 1
pstf_tokens = self.compute_postfix_tokens()
super(Fraction, self).__init__(pstf_tokens)
def simplify(self):
"""Simplify the fraction
:returns: steps to simplify the fraction or the fraction if there is nothing to do
>>> f = Fraction(3, 6)
>>> f.simplify()
< Fraction 1 / 2>
>>> for i in f.simplify().explain():
... print(i)
\\frac{ 3 }{ 6 }
\\frac{ 1 \\times 3 }{ 2 \\times 3 }
\\frac{ 1 }{ 2 }
>>> f = Fraction(6,9)
>>> f.simplify()
< Fraction 2 / 3>
>>> f.simplify().steps
[< Step [6, 9, /]>, < Step [2, 3, *, 3, 3, *, /]>]
>>> for i in f.simplify().explain():
... print(i)
\\frac{ 6 }{ 9 }
\\frac{ 2 \\times 3 }{ 3 \\times 3 }
\\frac{ 2 }{ 3 }
>>> f = Fraction(0,3)
>>> f.simplify()
0
"""
ini_step = [Step(self.postfix_tokens)]
if self._num == 0:
return Expression([0]).simplify()
elif isinstance(self._num, Fraction) or isinstance(self._denom, Fraction):
return self._num / self._denom
elif self._denom < 0:
n_frac = Fraction(-self._num, -self._denom)
ans = n_frac.simplify()
ans.this_append_before(ini_step)
return ans
gcd_ = gcd(abs(self._num), abs(self._denom))
if gcd_ == self._denom:
n_frac = self._num // gcd_
return Expression([n_frac]).simplify()
elif gcd_ != 1:
n_frac = Fraction(self._num // gcd_, self._denom // gcd_)
ini_step += [Step([
n_frac._num, gcd_, op.mul,
n_frac._denom, gcd_, op.mul,
op.div
])]
n_frac.this_append_before(ini_step)
return n_frac
else:
return copy(self)
def compute_postfix_tokens(self):
"""Postfix form of the fraction
>>> f = Fraction(3, 5)
>>> f.postfix_tokens
[3, 5, /]
"""
if self._denom == 1:
return [self._num]
else:
return [self._num, self._denom, op.div]
def __str__(self):
return str(Expression(self.postfix_tokens))
def __repr__(self):
return "< Fraction {num} / {denom}>".format(
num=self._num, denom=self._denom)
def __float__(self):
return self._num / self._denom
def convert2fraction(self, other):
""" Convert a other into a fraction """
if isinstance(other, Fraction):
# cool
number = other
else:
number = Fraction(other)
return number
def __add__(self, other):
""" overload +
>>> f = Fraction(1, 2)
>>> g = Fraction(2, 3)
>>> f + g
< Fraction 7 / 6>
>>> print("\\n".join([repr(i) for i in (f+g).steps]))
< Step [1, 2, /, 2, 3, /, +]>
< Step [1, 3, *, 2, 3, *, /, 2, 2, *, 3, 2, *, /, +]>
< Step [3, 6, /, 4, 6, /, +]>
< Step [3, 6, /, 4, 6, /, +]>
< Step [3, 6, /, 4, 6, /, +]>
< Step [3, 6, /, 4, 6, /, +]>
< Step [3, 6, /, 4, 6, /, +]>
< Step [3, 4, +, 6, /]>
< Step [7, 6, /]>
>>> f + 2
< Fraction 5 / 2>
>>> print("\\n".join([repr(i) for i in (f+2).steps]))
< Step [1, 2, /, 2, +]>
< Step [1, 1, *, 2, 1, *, /, 2, 2, *, 1, 2, *, /, +]>
< Step [1, 2, /, 4, 2, /, +]>
< Step [1, 2, /, 4, 2, /, +]>
< Step [1, 2, /, 4, 2, /, +]>
< Step [1, 2, /, 4, 2, /, +]>
< Step [1, 2, /, 4, 2, /, +]>
< Step [1, 4, +, 2, /]>
< Step [5, 2, /]>
>>> f = Fraction(3, 4)
>>> g = Fraction(5, 4)
>>> f + g
2
>>> print("\\n".join([repr(i) for i in (f+g).steps]))
< Step [3, 4, /, 5, 4, /, +]>
< Step [3, 5, +, 4, /]>
< Step [8, 4, /]>
< Step [8, 4, /]>
< Step [8, 4, /]>
>>> f+0
< Fraction 3 / 4>
>>> (f+0).steps
[]
"""
if other == 0:
return copy(self)
number = self.convert2fraction(other)
if self._denom == number._denom:
com_denom = self._denom
num1 = self._num
num2 = number._num
exp = Expression([num1, num2, op.add, com_denom, op.div])
else:
gcd_denom = gcd(self._denom, number._denom)
coef1 = number._denom // gcd_denom
coef2 = self._denom // gcd_denom
exp = Expression([self._num,
coef1,
op.mul,
self._denom,
coef1,
op.mul,
op.div,
number._num,
coef2,
op.mul,
number._denom,
coef2,
op.mul,
op.div,
op.add])
ans = exp.simplify()
ini_step = Step(self.postfix_tokens +
number.postfix_tokens + [op.add])
ans.this_append_before([ini_step])
return ans
def __radd__(self, other):
if other == 0:
return Expression(self.postfix_tokens)
number = self.convert2fraction(other)
return number + self
def __sub__(self, other):
""" overload -
>>> f = Fraction(1, 2)
>>> g = Fraction(2, 3)
>>> f - g
< Fraction -1 / 6>
>>> print("\\n".join([repr(i) for i in (f-g).steps]))
< Step [1, 2, /, 2, 3, /, -]>
< Step [1, 3, *, 2, 3, *, /, 2, 2, *, 3, 2, *, /, -]>
< Step [3, 6, /, 4, 6, /, -]>
< Step [3, 6, /, 4, 6, /, -]>
< Step [3, 6, /, 4, 6, /, -]>
< Step [3, 6, /, 4, 6, /, -]>
< Step [3, 6, /, 4, 6, /, -]>
< Step [3, 4, -, 6, /]>
< Step [-1, 6, /]>
>>> f - 0
< Fraction 1 / 2>
>>> (f-0).steps
[]
"""
if other == 0:
return copy(self)
number = self.convert2fraction(other)
if self._denom == number._denom:
com_denom = self._denom
num1 = self._num
num2 = number._num
exp = Expression([num1, num2, op.sub, com_denom, op.div])
else:
gcd_denom = gcd(self._denom, number._denom)
coef1 = number._denom // gcd_denom
coef2 = self._denom // gcd_denom
exp = Expression([self._num,
coef1,
op.mul,
self._denom,
coef1,
op.mul,
op.div,
number._num,
coef2,
op.mul,
number._denom,
coef2,
op.mul,
op.div,
op.sub])
ini_step = Step(self.postfix_tokens +
number.postfix_tokens + [op.sub])
ans = exp.simplify()
ans.this_append_before([ini_step])
return ans
def __rsub__(self, other):
if other == 0:
return copy(self)
number = self.convert2fraction(other)
return number - self
def __neg__(self):
""" overload - (as arity 1 operator)
>>> f = Fraction(1, 2)
>>> -f
< Fraction -1 / 2>
>>> (-f).steps
[]
>>> f = Fraction(1, -2)
>>> f
< Fraction 1 / -2>
>>> -f
< Fraction 1 / 2>
>>> (-f).steps
[< Step [-1, -2, /]>]
"""
f = Fraction(-self._num, self._denom)
ans = f.simplify()
return ans
def __mul__(self, other):
""" overload *
>>> f = Fraction(1, 2)
>>> g = Fraction(2, 3)
>>> f*g
< Fraction 1 / 3>
>>> print("\\n".join([repr(i) for i in (f*g).steps]))
< Step [1, 2, /, 2, 3, /, *]>
< Step [1, 2, *, 2, 3, *, /]>
< Step [1, 3, /]>
< Step [1, 3, /]>
>>> f * 0
0
>>> (f*0).steps
[< Step [1, 2, /, 0, *]>]
>>> f*1
< Fraction 1 / 2>
>>> (f*1).steps
[< Step [1, 2, /, 1, *]>]
>>> f*4
2
>>> print("\\n".join([repr(i) for i in (f*4).steps]))
< Step [1, 2, /, 4, *]>
< Step [1, 2, *, 2, *, 1, 2, *, /]>
< Step [1, 2, *, 1, /]>
< Step [2, 1, /]>
< Step [2, 1, /]>
< Step [2]>
"""
steps = [Step([self, other, op.mul])]
if other == 0:
exp = Expression([0])
elif other == 1:
exp = copy(self)
elif isinstance(other, int):
gcd1 = gcd(other, self._denom)
if gcd1 != 1:
num_s = [self._num] + \
[int(other / gcd1), op.mul] * (int(other / gcd1) != 1) + \
[gcd1, op.mul]
denom_s = [int(self._denom / gcd1), gcd1, op.mul]
steps.append(Step(num_s + denom_s + [op.div]))
num = [self._num] + [int(other / gcd1), op.mul] * (int(other / gcd1) != 1)
denom = [int(self._denom / gcd1)]
else:
num = [self._num, other, op.mul]
denom = [self._denom]
exp = Expression(num + denom + [op.div])
else:
number = self.convert2fraction(other)
gcd1 = gcd(self._num, number._denom)
if gcd1 != 1:
num1_s = [gcd1] + [int(self._num / gcd1), op.mul] * (int(self._num / gcd1) != 1)
denom2_s = [gcd1] + [int(number._denom / gcd1), op.mul] * (int(number._denom / gcd1) != 1)
num1 = [int(self._num / gcd1)] * (int(self._num / gcd1) != 1)
denom2 = [int(number._denom / gcd1)] * (int(self._denom / gcd1) != 1)
else:
num1_s = [self._num]
denom2_s = [number._denom]
num1 = [self._num]
denom2 = [number._denom]
gcd2 = gcd(self._denom, number._num)
if gcd2 != 1:
num2_s = [gcd2] + [int(number._num / gcd2), op.mul] * (int(number._num / gcd2) != 1)
denom1_s = [gcd2] + [int(self._denom / gcd2), op.mul] * (int(self._denom / gcd2) != 1)
num2 = [int(number._num / gcd2)] * (int(number._num / gcd2) != 1)
denom1 = [int(self._denom / gcd2)] * (int(number._denom / gcd2) != 1)
else:
num2_s = [number._num]
denom1_s = [self._denom]
num2 = [number._num]
denom1 = [self._denom]
steps.append(Step(num1_s + num2_s + [op.mul] +
denom1_s + denom2_s + [op.mul, op.div]))
exp = Expression(postfix_op(num1 + num2, op.mul, 1) +
postfix_op(denom1 + denom2, op.mul, 1) +
[op.div])
ans = exp.simplify()
ans.steps = steps + ans.steps
return ans
def __rmul__(self, other):
return self * other
def __truediv__(self, other):
""" overload /
>>> f = Fraction(1,2)
>>> g = Fraction(3,4)
>>> f / 0
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
>>> f / 1
< Fraction 1 / 2>
>>> (f/1).steps
[]
>>> f / g
< Fraction 2 / 3>
"""
if other == 0:
raise ZeroDivisionError("division by zero")
elif other == 1:
return copy(self)
number = self.convert2fraction(other)
ini_step = Step(self.postfix_tokens +
number.postfix_tokens + [op.div])
number = Fraction(number._denom, number._num)
ans = self * number
ans.this_append_before([ini_step])
return ans
def __rtruediv__(self, other):
number = self.convert2fraction(other)
return number / self
def __pow__(self, power):
""" overload **
>>> f = Fraction(3, 4)
>>> f**0
1
>>> (f**0).steps
[< Step [3, 4, /, 0, ^]>]
>>> f**1
< Fraction 3 / 4>
>>> (f**1).steps
[< Step [3, 4, /, 1, ^]>]
>>> f**3
< Fraction 27 / 64>
>>> print("\\n".join([repr(i) for i in (f**3).steps]))
< Step [3, 4, /, 3, ^]>
< Step [3, 3, ^, 4, 3, ^, /]>
< Step [27, 64, /]>
< Step [27, 64, /]>
< Step [27, 64, /]>
>>> f = Fraction(6, 4)
>>> f**3
< Fraction 27 / 8>
>>> print("\\n".join([repr(i) for i in (f**3).steps]))
< Step [6, 4, /, 3, ^]>
< Step [6, 3, ^, 4, 3, ^, /]>
< Step [216, 64, /]>
< Step [216, 64, /]>
< Step [216, 64, /]>
< Step [216, 64, /]>
< Step [27, 8, *, 8, 8, *, /]>
"""
if not isinstance(power, int):
raise ValueError(
"Can't raise fraction to power {}".format(
str(power)))
ini_step = Step([self, power, op.pw])
if power == 0:
exp = Expression([1])
elif power == 1:
exp = copy(self)
else:
exp = Expression([
self._num, power, op.pw,
self._denom, power, op.pw,
op.div
])
ans = exp.simplify()
ans.this_append_before([ini_step])
return ans
def __xor__(self, power):
""" overload ^
Work like **
>>> f = Fraction(3, 4)
>>> f^0
1
>>> f^1
< Fraction 3 / 4>
>>> f^3
< Fraction 27 / 64>
"""
return self.__pow__(power)
def __abs__(self):
return Fraction(abs(self._num), abs(self._denom))
def __eq__(self, other):
""" == """
if isNumber(other):
number = self.convert2fraction(other)
return self._num * number._denom == self._denom * number._num
else:
return 0
def __lt__(self, other):
""" < """
return float(self) < float(other)
def __le__(self, other):
""" <= """
return float(self) <= float(other)
def __gt__(self, other):
""" > """
return float(self) > float(other)
def __ge__(self, other):
""" >= """
return float(self) >= float(other)
def __copy__(self):
""" Copying the fraction removing steps where it is from """
return Fraction(self._num, self._denom)
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del