Mapytex/pymath/formal.py

180 lines
4.4 KiB
Python

#!/usr/bin/env python
# encoding: utf-8
from .fraction import Fraction
from .generic import add_in_dict, remove_in_dict, convolution_dict
import re
class FormalExp(object):
"""A formal expression (similare to Symbol in Sympy"""
def __init__(self, coef = {}, letter = ""):
"""Initiat the formal expression
:param coef: the dictionary representing the expression
:param letter: minimum expression, a letter
"""
if coef != {} and letter != "":
raise ValueError("A FormalExp can't be initiate with dict_exp and a letter")
elif letter != "":
self._letter = letter
self._coef = {letter: 1}
elif coef != {}:
self._coef = coef
else:
raise ValueError("FormalExp needs a letter or dictionary of coeficients")
if len(self) != 1:
self.mainOp = "+"
def master_coef(self):
"""Return the master coefficient
/!\ may not work pretty well if there is more than one indeterminate
:returns: a_n
"""
pattern = "\w\^(\d*)"
finder = re.compile(pattern)
power = {}
for (k,v) in self._coef.items():
if k=="":
power[0] = v
else:
p = finder.findall(k)
if p == []:
power[1] = v
else:
power[int(p[0])] = v
m_power = max(power)
return power[m_power]
def check_calculous(self, other):
"""Check if other is a constant and then transform it into a dictionary compatible with FormalExp
:param other: The thing to compute with the expression
:returns: dictionary of this thing
"""
if type(other) in [int, Fraction]:
return {"":other}
elif type(other) == FormalExp:
return other._coef.copy()
else:
raise ValueError("Can't add {type} with FormalExp".format(type=type(other)))
def const_or_formal(self, d):
"""Return a constant if there is nothing else, FormalExp otherwise
:param d: dictionary descripting the expression
:returns: a constant or a FormalExp
"""
if list(d.keys()) == ['']:
return d['']
else:
return FormalExp(d)
def __add__(self, other):
d = self.check_calculous(other)
d = add_in_dict(self._coef, d)
d = remove_in_dict(d)
return [self.const_or_formal(d)]
def __radd__(self, other):
return self + other
def __sub__(self, other):
o_tmp = -other
return self + o_tmp
def __neg__(self):
d = {}
for k,v in self._coef.items():
d[k] = -v
return FormalExp(d)
def __mul__(self, other):
d = self.check_calculous(other)
d = convolution_dict(self._coef, d, op_key = self.op_key)
d = remove_in_dict(d)
return [self.const_or_formal(d)]
def op_key(self, x,y):
"""Operation on keys for convolution_dict"""
if x == "" or y == "":
return x+y
else:
return x + "*" + y
def __rmul__(self, other):
d = self.check_calculous(other)
d = convolution_dict(d, self._coef, op_key = self.op_key)
d = remove_in_dict(d)
return [self.const_or_formal(d)]
def __div__(self, other):
# Will never be done :D
pass
def __pow__(self, other):
# Will never be done :D quoique
pass
def __len__(self):
return len(list(self._coef.keys()))
def __str__(self):
ans = ""
for k,v in self._coef.items():
if v < 0:
ans += "-"
else:
ans += "+"
if abs(v) == 1:
ans += str(k)
else:
ans += str(abs(v)) + str(k)
if ans[0] == "+":
return ans[1:]
else:
return ans
if __name__ == '__main__':
fe1 = FormalExp({"x": -1, "":-2})
print(fe1)
fe2 = FormalExp({"x^12": 5, "":2})
print(fe2)
fe3 = fe1 * fe2
for s in fe3:
print(s)
fe4 = fe1 * 2
for s in fe4:
print(s)
fe = FormalExp(letter = "a")
fe_ = -2 * fe
print(fe_[0])
fe = FormalExp(letter = "a")
fe_ = fe * (-2)
print(fe_[0])
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del