310 lines
9.7 KiB
Python
310 lines
9.7 KiB
Python
#!/usr/bin/env python
|
|
# encoding: utf-8
|
|
|
|
|
|
from .explicable import Explicable
|
|
from .expression import Expression
|
|
from .step import Step
|
|
from .decorators import no_repetition
|
|
from .polynom import Polynom
|
|
from .fraction import Fraction
|
|
|
|
from .random_expression import RdExpression
|
|
|
|
__all__ = ['Equation']
|
|
|
|
|
|
class Equation(object):
|
|
"""A calculus expression. Today it can andle only expression with numbers later it will be able to manipulate unknown"""
|
|
|
|
@classmethod
|
|
def random(self, form="", conditions=[], val_min=-10, val_max=10):
|
|
"""Create a random expression from form and with conditions
|
|
|
|
:param form: the form of the expression (/!\ variables need to be in brackets {})
|
|
:param conditions: condition on variables (/!\ variables need to be in brackets {})
|
|
:param val_min: min value for generate variables
|
|
:param val_max: max value for generate variables
|
|
|
|
>>> Equation.random("{a}x + {b} = 0") # doctest:+ELLIPSIS
|
|
< Equation [..., 0]>
|
|
>>> Equation.random("{a}x + {b} = _", conditions = ["{a}==2"]) # doctest:+ELLIPSIS
|
|
< Equation [2 x ...]>
|
|
|
|
"""
|
|
random_generator = RdExpression(form, conditions)
|
|
return Equation(random_generator(val_min, val_max))
|
|
|
|
|
|
def __init__(self, exp_str = "", left_poly = Expression([0]), right_poly = Expression([0])):
|
|
"""Create the equation
|
|
|
|
:param exp_str: the equality string which represent the equation
|
|
:param left_poly: the left polynom of the equation
|
|
:param right_poly: the right polynom of the equation
|
|
|
|
>>> e = Equation("2x+3 = 4x+5")
|
|
>>> e
|
|
< Equation [2 x + 3, 4 x + 5]>
|
|
>>> Pl = Polynom([1, 2])
|
|
>>> Pr = Polynom([3, 4])
|
|
>>> e = Equation(left_poly = Pl)
|
|
>>> e
|
|
< Equation [2 x + 1, 0]>
|
|
>>> e = Equation(right_poly = Pr)
|
|
>>> e
|
|
< Equation [0, 4 x + 3]>
|
|
>>> e = Equation(left_poly = Pl, right_poly = Pr)
|
|
>>> e
|
|
< Equation [2 x + 1, 4 x + 3]>
|
|
|
|
"""
|
|
if exp_str:
|
|
l_part, r_part = exp_str.split("=")
|
|
self.l_exp = Expression(l_part)
|
|
self.r_exp = Expression(r_part)
|
|
else:
|
|
self.l_exp = left_poly
|
|
self.r_exp = right_poly
|
|
|
|
self.smpl_each_part()
|
|
|
|
def smpl_each_part(self):
|
|
""" Simplify left and right part, transform them into polynom and stock them in smpl_*_exp
|
|
"""
|
|
self.smpl_l_exp = self.l_exp.simplify()
|
|
self.smpl_l_exp.steal_history(self.l_exp)
|
|
self.smpl_r_exp = self.r_exp.simplify()
|
|
self.smpl_r_exp.steal_history(self.r_exp)
|
|
|
|
try:
|
|
self.smpl_r_exp = self.smpl_l_exp.conv2poly(self.smpl_r_exp)
|
|
except AttributeError:
|
|
pass
|
|
|
|
try:
|
|
self.smpl_l_exp = self.smpl_r_exp.conv2poly(self.smpl_l_exp)
|
|
except AttributeError:
|
|
raise EquationError("None of left and right parts are polynoms. \
|
|
Can't use it to make an equation.")
|
|
|
|
# TODO: On pourrait rajouter des tests sur les inconnues |mar. mars 22 10:17:12 EAT 2016
|
|
|
|
def __str__(self):
|
|
return str(self.l_exp) + " = " + str(self.r_exp)
|
|
|
|
def __repr__(self):
|
|
return "< {cls} [{l}, {r}]>".format(
|
|
cls = str(self.__class__).split('.')[-1][:-2],
|
|
l = self.l_exp,
|
|
r = self.r_exp,
|
|
)
|
|
|
|
#@no_repetition(lambda x, y: (x[0] == y[0]) & (x[1] == y[1]))
|
|
@no_repetition()
|
|
def solve(self):
|
|
r"""Solve the equation but yielding each steps
|
|
|
|
>>> e = Equation("x + 123 = 0")
|
|
>>> for i in e.solve():
|
|
... print(" = ".join([str(j) for j in i]))
|
|
x + 123 = 0
|
|
x + 123 - 123 = 0 - 123
|
|
x + 123 - 123 = 0 - 123
|
|
x + 123 - 123 = -123
|
|
x = -123
|
|
>>> e = Equation("2x = x + 2")
|
|
>>> for i in e.solve():
|
|
... print(" = ".join([str(j) for j in i]))
|
|
2 x = x + 2
|
|
2 x - x = x + 2 - x
|
|
2 x - x = x + 2 - x
|
|
( 2 - 1 ) x = x - x + 2
|
|
x = ( 1 - 1 ) x + 2
|
|
x = 2
|
|
>>> e = Equation("2x = 1")
|
|
>>> for i in e.solve():
|
|
... print(" = ".join([str(j) for j in i]))
|
|
2 x = 1
|
|
2 x \times 2 = 1 \times 2
|
|
\frac{ 2 }{ 2 } x = \frac{ 1 }{ 2 }
|
|
x = \frac{ 1 }{ 2 }
|
|
>>> e = Equation("2x + 1 = 4x + 2")
|
|
>>> for i in e.solve():
|
|
... print(" = ".join([str(j) for j in i]))
|
|
2 x + 1 = 4 x + 2
|
|
2 x + 1 - 1 = 4 x + 2 - 1
|
|
2 x + 1 - 1 = 4 x + 2 - 1
|
|
2 x + 1 - 1 = 4 x + 2 - 1
|
|
2 x = 4 x + 1
|
|
2 x - 4 x = 4 x + 1 - 4 x
|
|
2 x - 4 x = 4 x + 1 - 4 x
|
|
( 2 - 4 ) x = 4 x - 4 x + 1
|
|
-2 x = ( 4 - 4 ) x + 1
|
|
-2 x = 1
|
|
-2 x \times ( -2 ) = 1 \times ( -2 )
|
|
\frac{ -2 }{ -2 } x = \frac{ 1 }{ -2 }
|
|
x = \frac{ -1 }{ 2 }
|
|
>>> e = Equation("2x + 3x + 1 = 4x + 2")
|
|
>>> for i in e.solve():
|
|
... print(" = ".join([str(j) for j in i]))
|
|
2 x + 3 x + 1 = 4 x + 2
|
|
( 2 + 3 ) x + 1 = 4 x + 2
|
|
5 x + 1 = 4 x + 2
|
|
5 x + 1 - 1 = 4 x + 2 - 1
|
|
5 x + 1 - 1 = 4 x + 2 - 1
|
|
5 x + 1 - 1 = 4 x + 2 - 1
|
|
5 x = 4 x + 1
|
|
5 x - 4 x = 4 x + 1 - 4 x
|
|
5 x - 4 x = 4 x + 1 - 4 x
|
|
( 5 - 4 ) x = 4 x - 4 x + 1
|
|
x = ( 4 - 4 ) x + 1
|
|
x = 1
|
|
"""
|
|
yield from self.gene_smpl_steps()
|
|
|
|
if self.smpl_l_exp._coef[0] != 0:
|
|
eq = Equation(
|
|
left_poly = self.smpl_l_exp - self.smpl_l_exp._coef[0],
|
|
right_poly = self.smpl_r_exp - self.smpl_l_exp._coef[0]
|
|
)
|
|
yield from eq.solve()
|
|
return
|
|
|
|
try:
|
|
poly_r_part = Polynom([0, self.smpl_r_exp._coef[1]])
|
|
except IndexError:
|
|
pass
|
|
else:
|
|
if self.smpl_r_exp._coef[1] != 0:
|
|
yield from Equation(
|
|
left_poly = self.smpl_l_exp - poly_r_part,
|
|
right_poly = self.smpl_r_exp - poly_r_part
|
|
).solve()
|
|
return
|
|
|
|
if self.smpl_l_exp._coef[1] != 1:
|
|
yield from Equation(
|
|
left_poly = self.smpl_l_exp / self.smpl_l_exp._coef[1],
|
|
right_poly = self.smpl_r_exp / self.smpl_l_exp._coef[1]
|
|
).solve()
|
|
return
|
|
|
|
@no_repetition()
|
|
def gene_smpl_steps(self):
|
|
r"""Generate simplification steps of the equation
|
|
|
|
>>> e = Equation("2x + 3x + 1 = 4x + 2")
|
|
>>> e.gene_smpl_steps() # doctest:+ELLIPSIS
|
|
<generator object Equation.gene_smpl_steps at ...>
|
|
>>> for i in e.gene_smpl_steps():
|
|
... print(i)
|
|
[< Step [2, 'x', *, 3, 'x', *, +, 1, +]>, < Step [4, 'x', *, 2, +]>]
|
|
[< Step [2, 3, +, 'x', *, 1, +]>, < Step [4, 'x', *, 2, +]>]
|
|
[< Step [5, 'x', *, 1, +]>, < Step [4, 'x', *, 2, +]>]
|
|
>>> e = Equation("2x + 3x + 1 = 4x + 2")
|
|
>>> for i in e.gene_smpl_steps():
|
|
... print(" = ".join([str(j) for j in i]))
|
|
2 x + 3 x + 1 = 4 x + 2
|
|
( 2 + 3 ) x + 1 = 4 x + 2
|
|
5 x + 1 = 4 x + 2
|
|
>>> e = Equation("3x / 3 = 5 / 3")
|
|
>>> for i in e.gene_smpl_steps():
|
|
... print(" = ".join([str(j) for j in i]))
|
|
3 \times \frac{ x }{ 3 } = \frac{ 5 }{ 3 }
|
|
\frac{ x }{ 3 } \times 3 = \frac{ 5 }{ 3 }
|
|
\frac{ x \times 3 }{ 1 \times 3 } = \frac{ 5 }{ 3 }
|
|
\frac{ x }{ 1 } = \frac{ 5 }{ 3 }
|
|
x = \frac{ 5 }{ 3 }
|
|
|
|
"""
|
|
#yield [Step(self.l_exp), Step(self.r_exp)]
|
|
|
|
for s in Explicable.merge_history(
|
|
[self.smpl_l_exp, self.smpl_r_exp]
|
|
):
|
|
yield s
|
|
|
|
def solution(self):
|
|
"""Return the solution of the equation
|
|
|
|
:returns: the solution
|
|
|
|
>>> e = Equation("2x + 1 = x + 2")
|
|
>>> e.solution()
|
|
1
|
|
>>> e = Equation("2x + 1 = 1")
|
|
>>> e.solution()
|
|
0
|
|
>>> e = Equation("1 = 2x + 1")
|
|
>>> e.solution()
|
|
0
|
|
>>> e = Equation("3x = 2x")
|
|
>>> e.solution()
|
|
0
|
|
>>> e = Equation("3x + 1 = 0")
|
|
>>> e.solution()
|
|
< Fraction -1 / 3>
|
|
>>> e = Equation("6x + 2 = 0")
|
|
>>> e.solution()
|
|
< Fraction -1 / 3>
|
|
|
|
"""
|
|
num = self.smpl_r_exp._coef[0] - self.smpl_l_exp._coef[0]
|
|
|
|
try:
|
|
denom = self.smpl_l_exp._coef[1]
|
|
except IndexError:
|
|
denom = 0
|
|
try:
|
|
denom -= self.smpl_r_exp._coef[1]
|
|
except IndexError:
|
|
pass
|
|
|
|
if denom == 0 and num == 0:
|
|
raise EquationError("All number are solution")
|
|
elif denom == 0:
|
|
raise NoSolutionError("This equation has no solution")
|
|
|
|
return Fraction(num, denom).simplify()
|
|
|
|
def is_solution(self, num):
|
|
""" Tell if a number is a solution.
|
|
|
|
:param num: the number to test
|
|
|
|
>>> e = Equation("2x + 1 = x + 2")
|
|
>>> e.is_solution(2)
|
|
False
|
|
>>> e.is_solution(1)
|
|
True
|
|
>>> e = Equation("3x = 2x")
|
|
>>> e.is_solution(1)
|
|
False
|
|
>>> e.is_solution(0)
|
|
True
|
|
>>> e = Equation("3x + 1 = 0")
|
|
>>> e.is_solution(0)
|
|
False
|
|
>>> e.is_solution(Fraction(-1, 3))
|
|
True
|
|
>>> e.is_solution(Fraction(-2, 6))
|
|
True
|
|
|
|
"""
|
|
l_part = self.smpl_l_exp.replace_letter(num).simplify()
|
|
r_part = self.smpl_r_exp.replace_letter(num).simplify()
|
|
return l_part == r_part
|
|
|
|
class EquationError(Exception):
|
|
pass
|
|
|
|
|
|
class NoSolutionError(EquationError):
|
|
pass
|
|
|
|
# -----------------------------
|
|
# Reglages pour 'vim'
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
# cursor: 16 del
|