251 lines
8.1 KiB
Python
251 lines
8.1 KiB
Python
#!/usr/bin/env python
|
|
# encoding: utf-8
|
|
|
|
from .polynom import Polynom
|
|
from .expression import Expression
|
|
from .fraction import Fraction
|
|
from .operator import op
|
|
from .random_expression import RdExpression
|
|
|
|
from sympy import sqrt, latex
|
|
#from sympy.fractions import Fraction as sp.Fraction
|
|
|
|
__all__ = ["Polynom_deg2"]
|
|
|
|
class Polynom_deg2(Polynom):
|
|
|
|
""" Degree 2 polynoms
|
|
Child of Polynom with some extra tools
|
|
"""
|
|
|
|
@classmethod
|
|
def random(self, coefs_form = ["{c}", "{b}", "{a}"], conditions = [], letter = "x", name = "P"):
|
|
""" Create a 2nd degree poly from coefs_form ans conditions
|
|
|
|
:param coefs_form: list of forms (one by coef) (ascending degree sorted)
|
|
:param conditions: condition on variables
|
|
:param letter: the letter for the polynom
|
|
|
|
"""
|
|
if len(coefs_form) != 3:
|
|
raise ValueError("Polynom_deg2 have to be degree 2 polynoms, they need 3 coefficients, {} are given".format(len(coefs_form)))
|
|
|
|
form = str(coefs_form)
|
|
# On créé les valeurs toutes concaténées dans un string
|
|
coefs = RdExpression(form, conditions)()
|
|
# On "parse" ce string pour créer les coefs
|
|
coefs = [eval(i) if type(i)==str else i for i in eval(coefs)]
|
|
# Création du polynom
|
|
return Polynom_deg2(coefs = coefs, letter = letter, name = name)
|
|
|
|
def __init__(self, coefs = [0, 0, 1], letter = "x", name = "P", poly = 0):
|
|
if poly:
|
|
coefs = poly._coef
|
|
letter = poly._letter
|
|
name = poly.name
|
|
|
|
if len(coefs) < 3 or len(coefs) > 4:
|
|
raise ValueError("Polynom_deg2 have to be degree 2 polynoms, they need 3 coefficients, {} are given".format(len(coefs)))
|
|
if coefs[2] == 0:
|
|
raise ValueError("Polynom_deg2 have to be degree 2 polynoms, coefficient of x^2 can't be 0")
|
|
Polynom.__init__(self, coefs, letter, name = name)
|
|
|
|
@property
|
|
def a(self):
|
|
return self._coef[2]
|
|
|
|
@property
|
|
def b(self):
|
|
return self._coef[1]
|
|
|
|
@property
|
|
def c(self):
|
|
return self._coef[0]
|
|
|
|
@property
|
|
def delta(self):
|
|
"""Compute the discriminant expression
|
|
:returns: discriminant expression
|
|
|
|
>>> P = Polynom_deg2([1,2,3])
|
|
>>> P.delta
|
|
-8
|
|
>>> for i in P.delta.explain():
|
|
... print(i)
|
|
2^{ 2 } - 4 \\times 3 \\times 1
|
|
4 - 4 \\times 3
|
|
4 - 12
|
|
-8
|
|
"""
|
|
|
|
return Expression([self.b, 2, op.pw, 4, self.a, self.c, op.mul, op.mul, op.sub]).simplify()
|
|
|
|
@property
|
|
def alpha(self):
|
|
""" Compute alpha the abcisse of the extremum
|
|
|
|
>>> P = Polynom_deg2([1,2,3])
|
|
>>> P.alpha
|
|
< Fraction -1 / 3>
|
|
>>> for i in P.alpha.explain():
|
|
... print(i)
|
|
\\frac{ - 2 }{ 2 \\times 3 }
|
|
\\frac{ -2 }{ 6 }
|
|
\\frac{ -1 \\times 2 }{ 3 \\times 2 }
|
|
\\frac{ -1 }{ 3 }
|
|
"""
|
|
return Expression([self.b, op.sub1, 2, self.a, op.mul, op.div]).simplify()
|
|
|
|
@property
|
|
def beta(self):
|
|
""" Compute beta the extremum of self
|
|
|
|
>>> P = Polynom_deg2([1,2,3])
|
|
>>> P.beta
|
|
< Fraction 2 / 3>
|
|
>>> for i in P.beta.explain(): # Ça serait bien que l'on puisse enlever des étapes maintenant...
|
|
... print(i)
|
|
3 \\times ( \\frac{ -1 }{ 3 } )^{ 2 } + 2 \\times \\frac{ -1 }{ 3 } + 1
|
|
3 \\times ( \\frac{ -1 }{ 3 } )^{ 2 } + \\frac{ -1 }{ 3 } \\times 2 + 1
|
|
3 \\times \\frac{ -1^{ 2 } }{ 3^{ 2 } } + \\frac{ -1 \\times 2 }{ 3 } + 1
|
|
3 \\times \\frac{ 1 }{ 9 } + \\frac{ -2 }{ 3 } + 1
|
|
\\frac{ 1 }{ 9 } \\times 3 + \\frac{ -1 }{ 3 } \\times 2 + 1
|
|
\\frac{ 1 \\times 1 \\times 3 }{ 3 \\times 3 } + \\frac{ -1 \\times 2 }{ 3 } + 1
|
|
\\frac{ 1 \\times 3 }{ 9 } + \\frac{ -2 }{ 3 } + 1
|
|
\\frac{ 3 }{ 9 } + \\frac{ -2 }{ 3 } + 1
|
|
\\frac{ 1 \\times 3 }{ 3 \\times 3 } + \\frac{ -2 }{ 3 } + 1
|
|
\\frac{ 1 }{ 3 } + \\frac{ -2 }{ 3 } + 1
|
|
\\frac{ 1 - 2 }{ 3 } + 1
|
|
\\frac{ -1 }{ 3 } + 1
|
|
\\frac{ -1 \\times 1 }{ 3 \\times 1 } + \\frac{ 1 \\times 3 }{ 1 \\times 3 }
|
|
\\frac{ -1 }{ 3 } + \\frac{ 3 }{ 3 }
|
|
\\frac{ -1 + 3 }{ 3 }
|
|
\\frac{ 2 }{ 3 }
|
|
"""
|
|
return self(self.alpha)
|
|
|
|
def roots(self, after_coma = 2):
|
|
""" Compute roots of the polynom
|
|
|
|
/!\ Can't manage nice rendering because of sqrt.
|
|
It use sympy to compute roots
|
|
|
|
# TODO: Pymath has to know how to compute with sqare root |mar. févr. 24 18:40:04 CET 2015
|
|
|
|
>>> P = Polynom_deg2([1, 1, 1])
|
|
>>> P.roots()
|
|
[]
|
|
>>> P = Polynom_deg2([1, 2, 1])
|
|
>>> P.roots()
|
|
[-1]
|
|
>>> P = Polynom_deg2([-1, 0, 1])
|
|
>>> P.roots()
|
|
['-1', '1']
|
|
>>> P = Polynom_deg2([1, 4, 1])
|
|
>>> P.roots()
|
|
['-2 - \\\\sqrt{3}', '-2 + \\\\sqrt{3}']
|
|
"""
|
|
if self.delta > 0:
|
|
self._roots = [latex((-self.b - sqrt(self.delta))/(2*self.a)), latex((-self.b + sqrt(self.delta))/(2*self.a))]
|
|
elif self.delta == 0:
|
|
self._roots = [Fraction(-self.b,2*self.a).simplify()]
|
|
else:
|
|
self._roots = []
|
|
return self._roots
|
|
|
|
def tbl_sgn_header(self):
|
|
""" Return header of the sign line for tkzTabLine"""
|
|
if self.delta > 0:
|
|
return "{$-\\infty$, $" + str(min(self.roots())) + "$ , $" + str( max(self.roots())) + "$ , $+\\infty$}"
|
|
elif self.delta == 0:
|
|
return "{$-\\infty$, $" + str(self.roots()[0]) + "$ , $+\\infty$}"
|
|
else:
|
|
return "{$-\\infty$, $+\\infty$}"
|
|
|
|
def tbl_sgn(self):
|
|
""" Return the sign line for tkzTabLine
|
|
|
|
>>> P = Polynom_deg2([2, 5, 2])
|
|
>>> print(P.tbl_sgn())
|
|
\\tkzTabLine{, +, z, -, z , +,}
|
|
>>> P = Polynom_deg2([2, 1, -2])
|
|
>>> print(P.tbl_sgn())
|
|
\\tkzTabLine{, -, z, +, z , -,}
|
|
>>> P = Polynom_deg2([1, 2, 1])
|
|
>>> print(P.tbl_sgn())
|
|
\\tkzTabLine{, +, z, +,}
|
|
>>> P = Polynom_deg2([0, 0, -2])
|
|
>>> print(P.tbl_sgn())
|
|
\\tkzTabLine{, -, z, -,}
|
|
>>> P = Polynom_deg2([1, 0, 1])
|
|
>>> print(P.tbl_sgn())
|
|
\\tkzTabLine{, +,}
|
|
>>> P = Polynom_deg2([-1, 0, -1])
|
|
>>> print(P.tbl_sgn())
|
|
\\tkzTabLine{, -,}
|
|
"""
|
|
if self.delta > 0:
|
|
if self.a > 0:
|
|
return "\\tkzTabLine{, +, z, -, z , +,}"
|
|
else:
|
|
return "\\tkzTabLine{, -, z, +, z , -,}"
|
|
elif self.delta == 0:
|
|
if self.a > 0:
|
|
return "\\tkzTabLine{, +, z, +,}"
|
|
else:
|
|
return "\\tkzTabLine{, -, z, -,}"
|
|
else:
|
|
if self.a > 0:
|
|
return "\\tkzTabLine{, +,}"
|
|
else:
|
|
return "\\tkzTabLine{, -,}"
|
|
|
|
def tbl_variation(self, limits = False):
|
|
"""Return the variation line for tkzTabVar
|
|
|
|
:param limit: Display or not limits in tabular
|
|
|
|
>>> P = Polynom_deg2([1,2,3])
|
|
>>> print(P.tbl_variation())
|
|
\\tkzTabVar{+/{}, -/{$\\frac{ 2 }{ 3 }$}, +/{}}
|
|
>>> print(P.tbl_variation(limits = True))
|
|
\\tkzTabVar{+/{$+\\infty$}, -/{$\\frac{ 2 }{ 3 }$}, +/{$+\\infty$}}
|
|
|
|
"""
|
|
beta = self.beta
|
|
if limits:
|
|
if self.a > 0:
|
|
return "\\tkzTabVar{+/{$+\\infty$}, -/{$" + str(beta) + "$}, +/{$+\\infty$}}"
|
|
else:
|
|
return "\\tkzTabVar{-/{$-\\infty$}, +/{$" + str(beta) + "$}, -/{$-\\infty$}}"
|
|
else:
|
|
if self.a > 0:
|
|
return "\\tkzTabVar{+/{}, -/{$" + str(beta) + "$}, +/{}}"
|
|
else:
|
|
return "\\tkzTabVar{-/{}, +/{$" + str(beta) + "$}, -/{}}"
|
|
|
|
|
|
if __name__ == '__main__':
|
|
#from .render import txt
|
|
#with Expression.tmp_render(txt):
|
|
# P = Polynom_deg2([2, 3, 4])
|
|
# print(P)
|
|
|
|
# print("\nDelta")
|
|
# for i in P.delta.explain():
|
|
# print(i)
|
|
# print("\nBeta")
|
|
# for i in P.beta.explain():
|
|
# print(i)
|
|
|
|
import doctest
|
|
doctest.testmod()
|
|
|
|
|
|
|
|
|
|
# -----------------------------
|
|
# Reglages pour 'vim'
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
# cursor: 16 del
|