208 lines
5.2 KiB
Python
208 lines
5.2 KiB
Python
# /usr/bin/env python
|
|
# -*- coding:Utf-8 -*-
|
|
|
|
#
|
|
#
|
|
# Ensemble de fonction rendant beaucoup plus pratique la résolution et l'élaboration des exercices de stat au lycée
|
|
#
|
|
#
|
|
|
|
# TODO: Rendre toutes les réponses Explicable!! |mar. janv. 12 09:41:00
|
|
# EAT 2016
|
|
|
|
from math import sqrt, ceil
|
|
from .number_tools import number_factory
|
|
from .random_generator import random_generator
|
|
|
|
|
|
class Dataset(list):
|
|
""" A dataset (a list) with statistics and latex rendering methods
|
|
|
|
>>> s = Dataset(range(100))
|
|
>>> s.sum()
|
|
4950
|
|
>>> s.mean()
|
|
49.5
|
|
>>> s.deviation()
|
|
83325
|
|
>>> s.variance()
|
|
833.25
|
|
>>> s.sd()
|
|
28.87
|
|
"""
|
|
|
|
@classmethod
|
|
def random(
|
|
cls,
|
|
length,
|
|
data_name="Valeurs",
|
|
distrib="gauss",
|
|
rd_args=(0, 1),
|
|
nbr_format=lambda x: round(x, 2),
|
|
v_min=None,
|
|
v_max=None,
|
|
exact_mean=None,
|
|
):
|
|
""" Generate a random list of value
|
|
|
|
:param length: length of the dataset
|
|
:param distrib: Distribution of the data set. It can be a function or string from ["randint", "uniform", "gauss", "choice"]
|
|
:param rd_args: arguments to pass to distrib
|
|
:param nbr_format: function which format value
|
|
:param v_min: minimum accepted value
|
|
:param v_max: maximum accepted value
|
|
:param exact_mean: if set, the last generated number will be create in order that the computed mean is exacly equal to "exact_mean"
|
|
"""
|
|
data = random_generator(
|
|
length, distrib, rd_args, nbr_format, v_min, v_max, exact_mean
|
|
)
|
|
|
|
return cls(data, data_name=data_name)
|
|
|
|
def __init__(self, data=[], data_name="Valeurs"):
|
|
"""
|
|
Create a numeric data set
|
|
|
|
:param data: values of the data set
|
|
:param data_name: name of the data set
|
|
"""
|
|
list.__init__(self, data)
|
|
|
|
self_name = data_name
|
|
|
|
def add_data(self, data):
|
|
"""Add datas to the data set
|
|
|
|
:param data: datas
|
|
"""
|
|
try:
|
|
self += data
|
|
except TypeError:
|
|
self += [data]
|
|
|
|
# --------------------------
|
|
# Stat tools
|
|
|
|
def effectif_total(self):
|
|
return len(self)
|
|
|
|
@number_factory
|
|
def sum(self):
|
|
return sum(self)
|
|
|
|
@number_factory
|
|
def mean(self):
|
|
return self.sum() / self.effectif_total()
|
|
|
|
@number_factory
|
|
def deviation(self):
|
|
""" Compute the deviation (not normalized) """
|
|
mean = self.mean()
|
|
return sum([(x - mean) ** 2 for x in self])
|
|
|
|
@number_factory
|
|
def variance(self):
|
|
return self.deviation() / self.effectif_total()
|
|
|
|
@number_factory
|
|
def sd(self):
|
|
""" Compute the standard deviation """
|
|
return sqrt(self.variance())
|
|
|
|
def quartiles(self):
|
|
"""
|
|
Calcul les quartiles de la série.
|
|
|
|
:return: un tuple avec (min, Q1, Me, Q3, Max)
|
|
|
|
>>> w = Dataset(range(12))
|
|
>>> w.quartiles()
|
|
(0, 2.5, 5.5, 8.5, 11)
|
|
"""
|
|
return (
|
|
min(self),
|
|
self.quartile(1),
|
|
self.quartile(2),
|
|
self.quartile(3),
|
|
max(self),
|
|
)
|
|
|
|
@number_factory
|
|
def quartile(self, quartile=1):
|
|
"""
|
|
Calcul un quartile de la série.
|
|
|
|
:param quartile: quartile à calculer (par defaut 1 -> Q1)
|
|
|
|
:return: le quartile demandé
|
|
|
|
: Example:
|
|
|
|
>>> w = Dataset(range(12))
|
|
>>> w.quartile(1)
|
|
2.5
|
|
>>> w.quartile(2)
|
|
5.5
|
|
>>> w.quartile(3)
|
|
8.5
|
|
>>> w = Dataset(range(14))
|
|
>>> w.quartile(1)
|
|
3
|
|
>>> w.quartile(2)
|
|
6.5
|
|
>>> w.quartile(3)
|
|
10
|
|
|
|
"""
|
|
# -1 to match with list indexing
|
|
position = self.posi_quartile(quartile) - 1
|
|
if position.is_integer():
|
|
return (self[int(position)] + self[int(position) + 1]) / 2
|
|
else:
|
|
return self[ceil(position)]
|
|
|
|
def posi_quartile(self, quartile=1):
|
|
"""
|
|
Calcul la position du quartile
|
|
|
|
:param quartile: le quartile concerné
|
|
|
|
:return : la position du quartile (arondis à l'entier suppérieur, non arrondis)
|
|
"""
|
|
return quartile * self.effectif_total() / 4
|
|
|
|
# --------------------------
|
|
# Rendu latex
|
|
|
|
def tabular_latex(self, nbr_lines=1):
|
|
""" Latex code to display dataset as a tabular """
|
|
d_per_line = self.effectif_total() // nbr_lines
|
|
d_last_line = self.effectif_total() % d_per_line
|
|
splited_data = [
|
|
self[x : x + d_per_line]
|
|
for x in range(0, self.effectif_total(), d_per_line)
|
|
]
|
|
# On ajoute les éléments manquant pour la dernière line
|
|
if d_last_line:
|
|
splited_data[-1] += [" "] * (d_per_line - d_last_line)
|
|
|
|
# Construction du tableau
|
|
latex = "\\begin{{tabular}}{{|c|*{{{nbr_col}}}{{c|}}}} \n".format(
|
|
nbr_col=d_per_line
|
|
)
|
|
latex += "\t\t \hline \n"
|
|
|
|
d_lines = [" & ".join(map(str, l)) for l in splited_data]
|
|
latex += " \\\\ \n \\hline \n".join(d_lines)
|
|
|
|
latex += " \\\\ \n \\hline \n"
|
|
latex += "\\end{tabular}"
|
|
|
|
return latex
|
|
|
|
|
|
# -----------------------------
|
|
# Reglages pour 'vim'
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
# cursor: 16 del
|