195 lines
5.1 KiB
Python
195 lines
5.1 KiB
Python
# /usr/bin/env python
|
|
# -*- coding:Utf-8 -*-
|
|
|
|
"""
|
|
Statistical tools which should ease statistical exercises creation
|
|
"""
|
|
|
|
|
|
from math import sqrt, ceil
|
|
from collections import Counter
|
|
from .dataset import Dataset
|
|
from itertools import chain
|
|
from .number_tools import number_factory
|
|
|
|
|
|
def flatten_list(l):
|
|
return list(chain(*l))
|
|
|
|
|
|
class WeightedDataset(dict):
|
|
""" A weighted dataset with statistics and latex rendering methods
|
|
|
|
>>> w = WeightedDataset([1, 2, 3, 4], "Enfants", [10, 11, 12, 13])
|
|
>>> print(w)
|
|
{1: 10, 2: 11, 3: 12, 4: 13}
|
|
>>> w.effectif_total()
|
|
46
|
|
>>> w.sum()
|
|
120
|
|
>>> w.mean()
|
|
2.61
|
|
>>> w.deviation()
|
|
56.96
|
|
>>> w.variance()
|
|
1.24
|
|
>>> w.sd()
|
|
1.11
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self, datas=[], data_name="Valeurs", weights=[], weight_name="Effectifs"
|
|
):
|
|
"""
|
|
Initiate the WeightedDataset
|
|
"""
|
|
if datas and not weights:
|
|
weightedDatas = Counter(datas)
|
|
elif datas and weights:
|
|
if len(datas) != len(weights):
|
|
raise ValueError("Datas and weights should have same length")
|
|
else:
|
|
weightedDatas = {i[0]: i[1] for i in zip(datas, weights)}
|
|
|
|
dict.__init__(self, weightedDatas)
|
|
|
|
self.data_name = data_name
|
|
self.weight_name = weight_name
|
|
|
|
def add_data(self, data, weight=1):
|
|
try:
|
|
self[data] += weight
|
|
except KeyError:
|
|
self[data] = weight
|
|
|
|
@number_factory
|
|
def total_weight(self):
|
|
return sum(self.values())
|
|
|
|
def effectif_total(self):
|
|
return self.total_weight()
|
|
|
|
@number_factory
|
|
def sum(self):
|
|
""" Not really a sum but the sum of the product of key and values """
|
|
return sum([k * v for (k, v) in self.items()])
|
|
|
|
@number_factory
|
|
def mean(self):
|
|
return self.sum() / self.effectif_total()
|
|
|
|
@number_factory
|
|
def deviation(self):
|
|
""" Compute the deviation (not normalized) """
|
|
mean = self.mean()
|
|
return sum([v * (k - mean) ** 2 for (k, v) in self.items()])
|
|
|
|
@number_factory
|
|
def variance(self):
|
|
return self.deviation() / self.effectif_total()
|
|
|
|
@number_factory
|
|
def sd(self):
|
|
""" Compute the standard deviation """
|
|
return sqrt(self.variance())
|
|
|
|
def quartiles(self):
|
|
"""
|
|
Calcul les quartiles de la série.
|
|
|
|
:return: un tuple avec (min, Q1, Me, Q3, Max)
|
|
|
|
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(5)]))
|
|
>>> w.quartiles()
|
|
(1, 2, 3, 4, 4)
|
|
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(6)]))
|
|
>>> w.quartiles()
|
|
(1, 3, 4, 5, 5)
|
|
|
|
"""
|
|
return (
|
|
min(self.keys()),
|
|
self.quartile(1),
|
|
self.quartile(2),
|
|
self.quartile(3),
|
|
max(self.keys()),
|
|
)
|
|
|
|
@number_factory
|
|
def quartile(self, quartile=1):
|
|
"""
|
|
Calcul un quartile de la série.
|
|
|
|
:param quartile: quartile à calculer (par defaut 1 -> Q1)
|
|
|
|
:return: le quartile demandé
|
|
|
|
: Example:
|
|
|
|
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(5)]))
|
|
>>> w.quartile(1)
|
|
2
|
|
>>> w.quartile(2)
|
|
3
|
|
>>> w.quartile(3)
|
|
4
|
|
>>> w = WeightedDataset(flatten_list([i*[i] for i in range(6)]))
|
|
>>> w.quartile(1)
|
|
3
|
|
>>> w.quartile(2)
|
|
4
|
|
>>> w.quartile(3)
|
|
5
|
|
|
|
"""
|
|
# -1 to match with list indexing
|
|
position = self.posi_quartile(quartile) - 1
|
|
expanded_values = flatten_list([v * [k] for (k, v) in self.items()])
|
|
if position.is_integer():
|
|
return (
|
|
expanded_values[int(position)] + expanded_values[int(position) + 1]
|
|
) / 2
|
|
else:
|
|
return expanded_values[ceil(position)]
|
|
|
|
def posi_quartile(self, quartile=1):
|
|
"""
|
|
Calcul la position du quartile
|
|
|
|
:param quartile: le quartile concerné
|
|
|
|
:return : la position du quartile (arondis à l'entier suppérieur, non arrondis)
|
|
"""
|
|
return quartile * self.effectif_total() / 4
|
|
|
|
# --------------------------
|
|
# Rendu latex
|
|
|
|
def tabular_latex(self):
|
|
""" Latex code to display dataset as a tabular """
|
|
latex = "\\begin{{tabular}}{{|c|*{{{nbr_col}}}{{c|}}}} \n".format(
|
|
nbr_col=len(self.keys())
|
|
)
|
|
latex += "\t \hline \n"
|
|
data_line = "\t {data_name} ".format(data_name=self.data_name)
|
|
weight_line = "\t {weight_name} ".format(weight_name=self.weight_name)
|
|
|
|
# TODO: Il faudra trouver une solution pour le formatage des données
|
|
# |sam. janv. 9 13:14:26 EAT 2016
|
|
for (v, e) in self.items():
|
|
data_line += "& {val} ".format(val=v)
|
|
weight_line += "& {eff} ".format(eff=e)
|
|
|
|
latex += data_line + "\\\\ \n \t \\hline \n"
|
|
latex += weight_line + "\\\\ \n \t \\hline \n"
|
|
latex += "\\end{tabular}"
|
|
|
|
return latex
|
|
|
|
|
|
# -----------------------------
|
|
# Reglages pour 'vim'
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
# cursor: 16 del
|