pdf_auralia/pdf_oralia/pages/charge.py

92 lines
2.2 KiB
Python
Raw Normal View History

2023-06-27 08:23:02 +00:00
import re
import numpy as np
import pandas as pd
2023-06-28 08:30:40 +00:00
RECAPITULATIF_DES_OPERATIONS = 1
DF_TYPES = {
"Fournisseur": str,
"RECAPITULATIF DES OPERATIONS": str,
"Débits": float,
"Crédits": float,
"Dont T.V.A.": float,
"Locatif": float,
"Déductible": float,
"immeuble": str,
"mois": str,
"annee": str,
"lot": str,
}
2023-07-07 19:26:00 +00:00
DEFAULT_FOURNISSEUR = "ROSIER MODICA MOTTEROZ SA"
def is_it(page_text):
if (
"RECAPITULATIF DES OPERATIONS" in page_text
and "COMPTE RENDU DE GESTION" not in page_text
):
return True
return False
2023-06-27 08:23:02 +00:00
def get_lot(txt):
"""Return lot number from "RECAPITULATIF DES OPERATIONS" """
regex = r"[BSM](\d+)(?=\s*-)"
try:
result = re.findall(regex, txt)
except TypeError:
return "*"
2023-06-27 08:23:02 +00:00
if result:
return "{:02d}".format(int(result[0]))
return "*"
def keep_row(row):
return not any(
[
2023-06-28 08:30:40 +00:00
word.lower() in row[RECAPITULATIF_DES_OPERATIONS].lower()
for word in ["TOTAL", "TOTAUX", "Solde créditeur", "Solde débiteur"]
]
)
def extract(table, additionnal_fields: dict = {}):
2023-06-28 08:30:40 +00:00
"""Turn table to dictionary with additional fields"""
extracted = []
header = table[0]
for row in table[1:]:
if keep_row(row):
r = dict()
for i, value in enumerate(row):
if header[i] == "":
r["Fournisseur"] = value
else:
r[header[i]] = value
for k, v in additionnal_fields.items():
r[k] = v
2023-07-07 19:26:00 +00:00
if "honoraire" in row[RECAPITULATIF_DES_OPERATIONS].lower():
r["Fournisseur"] = DEFAULT_FOURNISSEUR
extracted.append(r)
return extracted
def table2df(tables):
dfs = []
for table in tables:
df = (
pd.DataFrame.from_records(table)
.replace("", np.nan)
.dropna(subset=["Débits", "Crédits"], how="all")
)
df["Fournisseur"] = df["Fournisseur"].fillna(method="ffill")
dfs.append(df)
2023-06-28 08:44:56 +00:00
df = pd.concat(dfs)
df["immeuble"] = df["immeuble"].apply(lambda x: x[0].capitalize())
df["lot"] = df["RECAPITULATIF DES OPERATIONS"].apply(get_lot)
return df.astype(DF_TYPES)