Feat: marche avec les pdfs tous ensembles
This commit is contained in:
parent
1afb2a32ab
commit
8a55e6e2cc
@ -2,13 +2,11 @@ import logging
|
|||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import pdfplumber
|
import pdfplumber
|
||||||
|
|
||||||
from .extract_charge import extract_charge, extract_remise_com
|
from pdf_oralia.pages import charge, locataire, patrimoine, recapitulatif
|
||||||
from .extract_locataire import extract_situation_loc
|
|
||||||
|
|
||||||
charge_table_settings = {
|
extract_table_settings = {
|
||||||
"vertical_strategy": "lines",
|
"vertical_strategy": "lines",
|
||||||
"horizontal_strategy": "text",
|
"horizontal_strategy": "text",
|
||||||
}
|
}
|
||||||
@ -27,45 +25,63 @@ def extract_date(page_text):
|
|||||||
return datetime.strptime(words[-1], "%d/%m/%Y")
|
return datetime.strptime(words[-1], "%d/%m/%Y")
|
||||||
|
|
||||||
|
|
||||||
def extract_from_pdf(pdf, charge_dest, location_dest):
|
def extract_building(page_text, buildings=["bloch", "marietton", "servient"]):
|
||||||
"""Build charge_dest and location_dest xlsx file from pdf"""
|
for building in buildings:
|
||||||
|
if building in page_text.lower():
|
||||||
|
return building
|
||||||
|
raise ValueError("Pas d'immeuble trouvé")
|
||||||
|
|
||||||
|
|
||||||
|
def catch_malformed_table(tables):
|
||||||
|
if len(tables) == 2:
|
||||||
|
return tables[0] + tables[1]
|
||||||
|
return tables[0]
|
||||||
|
|
||||||
|
|
||||||
|
def from_pdf(pdf):
|
||||||
|
"""Build dataframes one about charges and another on loc"""
|
||||||
|
recapitulatif_tables = []
|
||||||
loc_tables = []
|
loc_tables = []
|
||||||
charge_table = []
|
charge_tables = []
|
||||||
|
patrimoie_tables = []
|
||||||
|
|
||||||
df_1st_charge = extract_remise_com(
|
for page in pdf.pages:
|
||||||
pdf.pages[0].extract_table(charge_table_settings)
|
|
||||||
)
|
|
||||||
|
|
||||||
for page in pdf.pages[1:]:
|
|
||||||
page_text = page.extract_text()
|
page_text = page.extract_text()
|
||||||
situation_loc_line = [
|
|
||||||
l for l in page_text.split("\n") if "SITUATION DES LOCATAIRES" in l
|
|
||||||
]
|
|
||||||
date = extract_date(page_text)
|
date = extract_date(page_text)
|
||||||
mois = date.strftime("%m")
|
additionnal_fields = {
|
||||||
annee = date.strftime("%Y")
|
"immeuble": extract_building(page_text),
|
||||||
if situation_loc_line:
|
"mois": date.strftime("%m"),
|
||||||
# mois, annee = situation_loc_line[0].split(" ")[-2:]
|
"annee": date.strftime("%Y"),
|
||||||
if loc_tables:
|
}
|
||||||
loc_tables.append(page.extract_table()[1:])
|
|
||||||
else:
|
|
||||||
loc_tables.append(page.extract_table())
|
|
||||||
|
|
||||||
elif "RECAPITULATIF DES OPERATIONS" in page_text:
|
if recapitulatif.is_it(page_text):
|
||||||
if charge_table:
|
table = page.extract_tables()[0]
|
||||||
charge_table += page.extract_table(charge_table_settings)[1:]
|
extracted = recapitulatif.extract(table, additionnal_fields)
|
||||||
else:
|
if extracted:
|
||||||
charge_table = page.extract_table(charge_table_settings)
|
recapitulatif_tables.append(extracted)
|
||||||
|
|
||||||
df_charge = extract_charge(charge_table)
|
elif locataire.is_it(page_text):
|
||||||
df_charge_with_1st = pd.concat([df_1st_charge, df_charge])
|
tables = page.extract_tables(extract_table_settings)[1:]
|
||||||
df_charge_with_1st.to_excel(charge_dest, sheet_name="Charges", index=False)
|
table = catch_malformed_table(tables)
|
||||||
logging.info(f"{charge_dest} saved")
|
extracted = locataire.extract(table, additionnal_fields)
|
||||||
|
loc_tables.append(extracted)
|
||||||
|
|
||||||
df_loc = extract_situation_loc(loc_tables, mois=mois, annee=annee)
|
elif charge.is_it(page_text):
|
||||||
df_loc = df_loc.assign()
|
tables = page.extract_tables(extract_table_settings)[1:]
|
||||||
df_loc.to_excel(location_dest, sheet_name="Location", index=False)
|
table = catch_malformed_table(tables)
|
||||||
logging.info(f"{location_dest} saved")
|
extracted = charge.extract(table, additionnal_fields)
|
||||||
|
charge_tables.append(extracted)
|
||||||
|
|
||||||
|
elif patrimoine.is_it(page_text):
|
||||||
|
pass
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError("Page non reconnu")
|
||||||
|
|
||||||
|
df_charge = charge.table2df(recapitulatif_tables + charge_tables)
|
||||||
|
df_loc = locataire.table2df(loc_tables)
|
||||||
|
|
||||||
|
return df_charge, df_loc
|
||||||
|
|
||||||
|
|
||||||
def extract_save(pdf_file, dest):
|
def extract_save(pdf_file, dest):
|
||||||
@ -75,4 +91,9 @@ def extract_save(pdf_file, dest):
|
|||||||
xls_locataire = Path(dest) / f"{pdf_file.stem.replace(' ', '_')}_locataire.xlsx"
|
xls_locataire = Path(dest) / f"{pdf_file.stem.replace(' ', '_')}_locataire.xlsx"
|
||||||
|
|
||||||
pdf = pdfplumber.open(pdf_file)
|
pdf = pdfplumber.open(pdf_file)
|
||||||
extract_from_pdf(pdf, xls_charge, xls_locataire)
|
df_charge, df_loc = from_pdf(pdf)
|
||||||
|
|
||||||
|
df_charge.to_excel(xls_charge, sheet_name="Charges", index=False)
|
||||||
|
logging.info(f"{xls_charge} saved")
|
||||||
|
df_loc.to_excel(xls_locataire, sheet_name="Location", index=False)
|
||||||
|
logging.info(f"{xls_locataire} saved")
|
||||||
|
@ -1,68 +0,0 @@
|
|||||||
import logging
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
|
|
||||||
def get_lot(x):
|
|
||||||
"""Return lot number from "RECAPITULATIF DES OPERATIONS" """
|
|
||||||
if x[:2].isdigit():
|
|
||||||
return x[:2]
|
|
||||||
if x[:1].isdigit():
|
|
||||||
return "0" + x[:1]
|
|
||||||
if x[:2] == "PC":
|
|
||||||
return "PC"
|
|
||||||
return ""
|
|
||||||
|
|
||||||
|
|
||||||
def extract_charge(table):
|
|
||||||
"""From pdfplumber table extract the charge dataframe"""
|
|
||||||
df = (
|
|
||||||
pd.DataFrame(table[1:], columns=table[0])
|
|
||||||
.replace("", np.nan)
|
|
||||||
.dropna(subset=["Débits", "Crédits"], how="all")
|
|
||||||
)
|
|
||||||
|
|
||||||
drop_index = df[
|
|
||||||
df["RECAPITULATIF DES OPERATIONS"].str.contains("TOTAUX", case=False)
|
|
||||||
| df["RECAPITULATIF DES OPERATIONS"].str.contains("Solde créditeur", case=False)
|
|
||||||
| df["RECAPITULATIF DES OPERATIONS"].str.contains("Solde débiteur", case=False)
|
|
||||||
| df["RECAPITULATIF DES OPERATIONS"].str.contains(
|
|
||||||
"Total des reglements locataires", case=False
|
|
||||||
)
|
|
||||||
].index
|
|
||||||
df.drop(drop_index, inplace=True)
|
|
||||||
|
|
||||||
df[""].mask(
|
|
||||||
df["RECAPITULATIF DES OPERATIONS"].str.contains("honoraires", case=False),
|
|
||||||
"IMI GERANCE",
|
|
||||||
inplace=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
df = df.assign(lot=df["RECAPITULATIF DES OPERATIONS"].map(get_lot))
|
|
||||||
|
|
||||||
df = df.astype(
|
|
||||||
{
|
|
||||||
"Débits": "float64",
|
|
||||||
"Crédits": "float64",
|
|
||||||
"Dont T.V.A.": "float64",
|
|
||||||
"Locatif": "float64",
|
|
||||||
"Déductible": "float64",
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
df.columns.values[0] = "Fournisseur"
|
|
||||||
return df
|
|
||||||
|
|
||||||
|
|
||||||
def extract_remise_com(table):
|
|
||||||
"""Extract "remise commercial" from first page"""
|
|
||||||
df = pd.DataFrame(table[1:], columns=table[0]).replace("", np.nan)
|
|
||||||
df = df[
|
|
||||||
df["RECAPITULATIF DES OPERATIONS"].str.contains(
|
|
||||||
"Remise commerciale gérance", case=False, na=False
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
df.columns.values[0] = "Fournisseur"
|
|
||||||
return df
|
|
@ -1,81 +0,0 @@
|
|||||||
import logging
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
|
|
||||||
def parse_above_loc(content):
|
|
||||||
row = {}
|
|
||||||
app, loc, *_ = content.split("\n")
|
|
||||||
app_ = app.split(" ")
|
|
||||||
row["lot"] = f"{int(app_[1]):02d}"
|
|
||||||
row["type"] = " ".join(app_[2:])
|
|
||||||
row["locataire"] = loc
|
|
||||||
return pd.Series(row)
|
|
||||||
|
|
||||||
|
|
||||||
def join_row(last, next):
|
|
||||||
row = []
|
|
||||||
for i in range(len(last)):
|
|
||||||
if last[i] and next[i]:
|
|
||||||
row.append(f"{last[i]}\n{next[i]}")
|
|
||||||
elif last[i]:
|
|
||||||
row.append(last[i])
|
|
||||||
elif next[i]:
|
|
||||||
row.append(next[i])
|
|
||||||
else:
|
|
||||||
row.append("")
|
|
||||||
return row
|
|
||||||
|
|
||||||
|
|
||||||
def join_tables(tables):
|
|
||||||
|
|
||||||
joined = tables[0]
|
|
||||||
|
|
||||||
for t in tables[1:]:
|
|
||||||
last_row = joined[-1]
|
|
||||||
if "Totaux" not in last_row[0]:
|
|
||||||
first_row = t[0]
|
|
||||||
joined_row = join_row(last_row, first_row)
|
|
||||||
joined = joined[:-1] + [joined_row] + t[1:]
|
|
||||||
else:
|
|
||||||
joined += t
|
|
||||||
|
|
||||||
return joined
|
|
||||||
|
|
||||||
|
|
||||||
def extract_situation_loc(tables, mois, annee):
|
|
||||||
"""From pdfplumber table extract locataire df"""
|
|
||||||
table = join_tables(tables)
|
|
||||||
try:
|
|
||||||
df = pd.DataFrame(table[1:], columns=table[0])
|
|
||||||
except IndexError:
|
|
||||||
print(table)
|
|
||||||
rows = []
|
|
||||||
for i, row in df[df["Locataires"] == "Totaux"].iterrows():
|
|
||||||
above_row_loc = df.iloc[i - 1]["Locataires"]
|
|
||||||
up_row = pd.concat(
|
|
||||||
[
|
|
||||||
row,
|
|
||||||
parse_above_loc(above_row_loc),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
rows.append(up_row)
|
|
||||||
df_cleaned = pd.concat(rows, axis=1).T
|
|
||||||
df_cleaned.drop(["Locataires", "", "Période"], axis=1, inplace=True)
|
|
||||||
|
|
||||||
df_cleaned = df_cleaned.astype(
|
|
||||||
{
|
|
||||||
"Loyers": "float64",
|
|
||||||
"Taxes": "float64",
|
|
||||||
"Provisions": "float64",
|
|
||||||
"Divers": "float64",
|
|
||||||
"Total": "float64",
|
|
||||||
"Réglés": "float64",
|
|
||||||
"Impayés": "float64",
|
|
||||||
},
|
|
||||||
errors="ignore",
|
|
||||||
)
|
|
||||||
|
|
||||||
df_cleaned = df_cleaned.assign(mois=mois, annee=annee)
|
|
||||||
return df_cleaned
|
|
@ -1,30 +0,0 @@
|
|||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
|
|
||||||
def extract_excel_to_dfs(directory, df_names=["charge", "locataire"]):
|
|
||||||
p = Path(directory)
|
|
||||||
dfs = {name: [] for name in df_names}
|
|
||||||
|
|
||||||
for file in p.glob("*.xlsx"):
|
|
||||||
year, month, immeuble, table = file.stem.split("_")
|
|
||||||
df = pd.read_excel(file, dtype={"lot": str}).assign(
|
|
||||||
annee=year, mois=month, immeuble=immeuble[:3]
|
|
||||||
)
|
|
||||||
dfs[table].append(df)
|
|
||||||
|
|
||||||
return dfs
|
|
||||||
|
|
||||||
|
|
||||||
def join_excel(directory, dest, df_names=["charge", "locataire"]):
|
|
||||||
dfs = extract_excel_to_dfs(directory, df_names)
|
|
||||||
destinations = {}
|
|
||||||
for tablename, datas in dfs.items():
|
|
||||||
df = pd.concat(datas)
|
|
||||||
destination = Path(dest) / f"{tablename}.xlsx"
|
|
||||||
df.to_excel(destination, index=False)
|
|
||||||
destinations[tablename] = destination
|
|
||||||
logging.info(f"{destination} written")
|
|
||||||
return destinations
|
|
1
pdf_oralia/pages/__init__.py
Normal file
1
pdf_oralia/pages/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from . import charge, locataire, patrimoine, recapitulatif
|
72
pdf_oralia/pages/charge.py
Normal file
72
pdf_oralia/pages/charge.py
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
RECAPITULATIF_DES_OPERATION = 1
|
||||||
|
|
||||||
|
|
||||||
|
def is_it(page_text):
|
||||||
|
if (
|
||||||
|
"RECAPITULATIF DES OPERATIONS" in page_text
|
||||||
|
and "COMPTE RENDU DE GESTION" not in page_text
|
||||||
|
):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def get_lot(x):
|
||||||
|
"""Return lot number from "RECAPITULATIF DES OPERATIONS" """
|
||||||
|
if x[:2].isdigit():
|
||||||
|
return x[:2]
|
||||||
|
if x[:1].isdigit():
|
||||||
|
return "0" + x[:1]
|
||||||
|
if x[:2] == "PC":
|
||||||
|
return "PC"
|
||||||
|
return ""
|
||||||
|
|
||||||
|
|
||||||
|
def keep_row(row):
|
||||||
|
return not any(
|
||||||
|
[
|
||||||
|
word.lower() in row[RECAPITULATIF_DES_OPERATION].lower()
|
||||||
|
for word in ["TOTAL", "TOTAUX", "Solde créditeur", "Solde débiteur"]
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def extract(table, additionnal_fields: dict = {}):
|
||||||
|
"""Turn table to dictionary with additionnal fields"""
|
||||||
|
extracted = []
|
||||||
|
header = table[0]
|
||||||
|
for row in table[1:]:
|
||||||
|
if keep_row(row):
|
||||||
|
r = dict()
|
||||||
|
for i, value in enumerate(row):
|
||||||
|
if header[i] == "":
|
||||||
|
r["Fournisseur"] = value
|
||||||
|
else:
|
||||||
|
r[header[i]] = value
|
||||||
|
|
||||||
|
for k, v in additionnal_fields.items():
|
||||||
|
r[k] = v
|
||||||
|
|
||||||
|
r["lot"] = get_lot(row[RECAPITULATIF_DES_OPERATION])
|
||||||
|
|
||||||
|
if "honoraire" in row[RECAPITULATIF_DES_OPERATION]:
|
||||||
|
r["Fournisseur"] = "IMI GERANCE"
|
||||||
|
|
||||||
|
extracted.append(r)
|
||||||
|
|
||||||
|
return extracted
|
||||||
|
|
||||||
|
|
||||||
|
def table2df(tables):
|
||||||
|
dfs = []
|
||||||
|
for table in tables:
|
||||||
|
df = (
|
||||||
|
pd.DataFrame.from_records(table)
|
||||||
|
.replace("", np.nan)
|
||||||
|
.dropna(subset=["Débits", "Crédits"], how="all")
|
||||||
|
)
|
||||||
|
df["Fournisseur"] = df["Fournisseur"].fillna(method="ffill")
|
||||||
|
dfs.append(df)
|
||||||
|
return pd.concat(dfs)
|
134
pdf_oralia/pages/locataire.py
Normal file
134
pdf_oralia/pages/locataire.py
Normal file
@ -0,0 +1,134 @@
|
|||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
def is_it(page_text):
|
||||||
|
if "SITUATION DES LOCATAIRES" in page_text:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def is_drop(row):
|
||||||
|
if "totaux" in row[0].lower():
|
||||||
|
return True
|
||||||
|
if not any(row):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def extract(table, additionnal_fields: dict = {}):
|
||||||
|
"""Turn table to dictionary with additionnal fields"""
|
||||||
|
extracted = []
|
||||||
|
header = table[0]
|
||||||
|
for row in table[1:]:
|
||||||
|
if not is_drop(row):
|
||||||
|
r = dict()
|
||||||
|
for i, value in enumerate(row):
|
||||||
|
if header[i] != "":
|
||||||
|
r[header[i]] = value
|
||||||
|
for k, v in additionnal_fields.items():
|
||||||
|
r[k] = v
|
||||||
|
extracted.append(r)
|
||||||
|
return extracted
|
||||||
|
|
||||||
|
|
||||||
|
def join_row(last, next):
|
||||||
|
row = {}
|
||||||
|
for key in last:
|
||||||
|
if last[key] == next[key]:
|
||||||
|
row[key] = last[key]
|
||||||
|
elif last[key] and next[key]:
|
||||||
|
row[key] = f"{last[key]}\n{next[key]}"
|
||||||
|
elif last[key]:
|
||||||
|
row[key] = last[key]
|
||||||
|
elif next[key]:
|
||||||
|
row[key] = next[key]
|
||||||
|
else:
|
||||||
|
row[key] = ""
|
||||||
|
return row
|
||||||
|
|
||||||
|
|
||||||
|
def join_tables(tables):
|
||||||
|
joined = tables[0]
|
||||||
|
|
||||||
|
for t in tables[1:]:
|
||||||
|
last_row = joined[-1]
|
||||||
|
if "totaux" not in last_row["Locataires"].lower():
|
||||||
|
first_row = t[0]
|
||||||
|
joined_row = join_row(last_row, first_row)
|
||||||
|
joined = joined[:-1] + [joined_row] + t[1:]
|
||||||
|
else:
|
||||||
|
joined += t
|
||||||
|
|
||||||
|
return joined
|
||||||
|
|
||||||
|
|
||||||
|
def parse_lot(string):
|
||||||
|
words = string.split(" ")
|
||||||
|
return {"Lot": words[1], "Type": " ".join(words[2:])}
|
||||||
|
|
||||||
|
|
||||||
|
def join_row(table):
|
||||||
|
joined = []
|
||||||
|
for row in table:
|
||||||
|
if row["Locataires"].startswith("Lot"):
|
||||||
|
row.update(parse_lot(row["Locataires"]))
|
||||||
|
row["Locataires"] = ""
|
||||||
|
joined.append(row)
|
||||||
|
elif row["Locataires"] == "Rappel de Loyer":
|
||||||
|
last_row = joined[-1]
|
||||||
|
row.update(
|
||||||
|
{
|
||||||
|
"Lot": last_row["Lot"],
|
||||||
|
"Type": last_row["Type"],
|
||||||
|
"Locataires": last_row["Locataires"],
|
||||||
|
"Divers": "Rappel de Loyer",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
joined.append(row)
|
||||||
|
|
||||||
|
elif row["Locataires"]:
|
||||||
|
last_row = joined.pop()
|
||||||
|
row_name = row["Locataires"].replace("\n", " ")
|
||||||
|
row.update({k: v for k, v in last_row.items() if v})
|
||||||
|
row["Locataires"] = last_row["Locataires"] + " " + row_name
|
||||||
|
joined.append(row)
|
||||||
|
|
||||||
|
else:
|
||||||
|
if row["Période"].startswith("Solde"):
|
||||||
|
last_row = joined.pop()
|
||||||
|
row.update(
|
||||||
|
{
|
||||||
|
"Lot": last_row["Lot"],
|
||||||
|
"Type": last_row["Type"],
|
||||||
|
"Locataires": last_row["Locataires"],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
joined.append(row)
|
||||||
|
|
||||||
|
elif row["Période"].startswith("Du"):
|
||||||
|
last_row = joined[-1]
|
||||||
|
row.update(
|
||||||
|
{
|
||||||
|
"Lot": last_row["Lot"],
|
||||||
|
"Type": last_row["Type"],
|
||||||
|
"Locataires": last_row["Locataires"],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
joined.append(row)
|
||||||
|
else:
|
||||||
|
print(row)
|
||||||
|
|
||||||
|
return joined
|
||||||
|
|
||||||
|
|
||||||
|
def flat_tables(tables):
|
||||||
|
tables_flat = []
|
||||||
|
for table in tables:
|
||||||
|
tables_flat.extend(table)
|
||||||
|
return tables_flat
|
||||||
|
|
||||||
|
|
||||||
|
def table2df(tables):
|
||||||
|
tables = flat_tables(tables)
|
||||||
|
joined = join_row(tables)
|
||||||
|
return pd.DataFrame.from_records(joined)
|
4
pdf_oralia/pages/patrimoine.py
Normal file
4
pdf_oralia/pages/patrimoine.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
def is_it(page_text):
|
||||||
|
if "VOTRE PATRIMOINE" in page_text:
|
||||||
|
return True
|
||||||
|
return False
|
34
pdf_oralia/pages/recapitulatif.py
Normal file
34
pdf_oralia/pages/recapitulatif.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
def is_it(page_text):
|
||||||
|
if "COMPTE RENDU DE GESTION" in page_text:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def extract(table, additionnal_fields: dict = {}):
|
||||||
|
"""Extract "remise commercial" from first page"""
|
||||||
|
extracted = []
|
||||||
|
header = table[0]
|
||||||
|
for row in table[1:]:
|
||||||
|
if "Remise commerciale gérance" in row:
|
||||||
|
r = dict()
|
||||||
|
for i, value in enumerate(row):
|
||||||
|
r[header[i]] = value
|
||||||
|
for k, v in additionnal_fields.items():
|
||||||
|
r[k] = v
|
||||||
|
extracted.append(r)
|
||||||
|
|
||||||
|
return extracted
|
||||||
|
|
||||||
|
# df = pd.DataFrame(table[1:], columns=table[0]).replace("", np.nan)
|
||||||
|
# df = df[
|
||||||
|
# df["RECAPITULATIF DES OPERATIONS"].str.contains(
|
||||||
|
# "Remise commerciale gérance", case=False, na=False
|
||||||
|
# )
|
||||||
|
# ]
|
||||||
|
#
|
||||||
|
# df.columns.values[0] = "Fournisseur"
|
||||||
|
# return df
|
Loading…
Reference in New Issue
Block a user