Compare commits

...

4 Commits

8 changed files with 1176 additions and 805 deletions

File diff suppressed because one or more lines are too long

View File

@ -1,3 +1,23 @@
# PDF AURALIA
Extraction de fichiers de comptabilité en pdf vers xlsx.
## Utilisation
- Lancement sur un fichier pdf particulier
```bash
pdf_oralia extract on <pdf_file> --dest <where to put producted files>
```
- Lancement sur tous les fichiers d'un repertoire (récursivement )
```bash
pdf_oralia extract all --src <source folder> --dest <destination folder>
```
Cette commande reproduira la structure du dossier source dans destination. Seul les fichiers non existants seront traités. Par default, les fichiers déjà produits ne seront pas écrasés.
On peut ajouter les options suivantes:
- `--force`: pour écraser les fichiers déjà traités
- `--only-plan`: pour voir quels fichiers pourraient être créé sans le faire.

View File

@ -1,10 +1,11 @@
import logging
from datetime import datetime
from pathlib import Path
import pandas as pd
import pdfplumber
from pdf_oralia.pages import charge, locataire, patrimoine, recapitulatif
from pdf_oralia.pages import charge, locataire, patrimoine
extract_table_settings = {
"vertical_strategy": "lines",
@ -32,68 +33,102 @@ def extract_building(page_text, buildings=["bloch", "marietton", "servient"]):
raise ValueError("Pas d'immeuble trouvé")
def catch_malformed_table(tables):
if len(tables) == 2:
return tables[0] + tables[1]
return tables[0]
def pdf_extract_tables_lines(pdf):
loc_sink = locataire.fsm()
next(loc_sink)
charge_sink = charge.fsm()
next(charge_sink)
patrimoine_sink = patrimoine.fsm()
next(patrimoine_sink)
for page_number, page in enumerate(pdf.pages):
page_text = page.extract_text()
date = extract_date(page_text)
try:
additionnal_fields = {
"immeuble": extract_building(page_text),
"mois": date.strftime("%m"),
"annee": date.strftime("%Y"),
}
except ValueError:
logging.warning(
f"L'immeuble de la page {page_number+1} non identifiable. Page ignorée."
)
continue
table_type = ""
if locataire.is_it(page_text):
table_type = "locataire"
elif charge.is_it(page_text):
table_type = "charge"
elif patrimoine.is_it(page_text):
table_type = "patrimoine"
else:
logging.warning(
f"Type de la page {page_number+1} non identifiable. Page ignorée."
)
continue
for line in page.extract_table(extract_table_settings):
if table_type == "locataire":
res = loc_sink.send(line)
if res:
res.update(additionnal_fields)
yield locataire.Line(**res)
elif table_type == "charge":
res = charge_sink.send(line)
if res:
res.update(additionnal_fields)
yield charge.Line(**res)
elif table_type == "patrimoine":
res = patrimoine_sink.send(line)
if res:
res.update(additionnal_fields)
yield patrimoine.Line(**res)
def from_pdf(pdf_file):
"""Build dataframes one about charges and another on loc"""
pdf = pdfplumber.open(pdf_file)
recapitulatif_tables = []
loc_tables = []
charge_tables = []
patrimoie_tables = []
for page_number, page in enumerate(pdf.pages):
page_text = page.extract_text()
date = extract_date(page_text)
additionnal_fields = {
"immeuble": extract_building(page_text),
"mois": date.strftime("%m"),
"annee": date.strftime("%Y"),
}
if recapitulatif.is_it(page_text):
table = page.extract_tables()[0]
extracted = recapitulatif.extract(table, additionnal_fields)
if extracted:
recapitulatif_tables.append(extracted)
elif locataire.is_it(page_text):
tables = page.extract_tables(extract_table_settings)[1:]
table = catch_malformed_table(tables)
extracted = locataire.extract(table, additionnal_fields)
loc_tables.append(extracted)
elif charge.is_it(page_text):
tables = page.extract_tables(extract_table_settings)[1:]
table = catch_malformed_table(tables)
extracted = charge.extract(table, additionnal_fields)
charge_tables.append(extracted)
elif patrimoine.is_it(page_text):
pass
locataire_lines = []
charge_lines = []
patrimoine_lines = []
for line in pdf_extract_tables_lines(pdf):
if isinstance(line, locataire.Line):
locataire_lines.append(line)
elif isinstance(line, charge.Line):
charge_lines.append(line)
elif isinstance(line, patrimoine.Line):
patrimoine_lines.append(line)
else:
logging.warning(f"Page {page_number+1} non reconnu. Page ignorée.")
df_charge = charge.table2df(recapitulatif_tables + charge_tables)
df_loc = locataire.table2df(loc_tables)
return df_charge, df_loc
return {
"charge": pd.DataFrame([c.__dict__ for c in charge_lines]),
"locataire": pd.DataFrame([c.__dict__ for c in locataire_lines]),
"patrimoine": pd.DataFrame([c.__dict__ for c in patrimoine_lines]),
}
def extract_save(pdf_file, dest):
def extract_plan(pdf_file, dest):
return {
"charge": Path(dest) / f"{pdf_file.stem.replace(' ', '_')}_charge.xlsx",
"locataire": Path(dest) / f"{pdf_file.stem.replace(' ', '_')}_locataire.xlsx",
"patrimoine": Path(dest) / f"{pdf_file.stem.replace(' ', '_')}_patrimoine.xlsx",
}
def extract_save(pdf_file, dest, save=[]):
"""Extract charge and locataire for pdf_file and put xlsx file in dest"""
pdf_file = Path(pdf_file)
xls_charge = Path(dest) / f"{pdf_file.stem.replace(' ', '_')}_charge.xlsx"
xls_locataire = Path(dest) / f"{pdf_file.stem.replace(' ', '_')}_locataire.xlsx"
xlss = extract_plan(pdf_file, dest)
df_charge, df_loc = from_pdf(pdf_file)
if save != []:
dfs = from_pdf(pdf_file)
df_charge.to_excel(xls_charge, sheet_name="Charges", index=False)
logging.info(f"{xls_charge} saved")
df_loc.to_excel(xls_locataire, sheet_name="Location", index=False)
logging.info(f"{xls_locataire} saved")
for s in save:
dfs[s].to_excel(xlss[s], sheet_name=s, index=False)
logging.info(f"{xlss[s]} saved")
return {k: v for k, v in xlss.items() if k in save}
return xlss

View File

@ -1,9 +1,16 @@
import re
from pydantic import BaseModel, field_validator
import numpy as np
import pandas as pd
RECAPITULATIF_DES_OPERATIONS = 1
HEADER_CHARGE = [
"",
"RECAPITULATIF DES OPERATIONS",
"Débits",
"Crédits",
"Dont T.V.A.",
"Locatif",
"Déductible",
]
DF_TYPES = {
"Fournisseur": str,
"RECAPITULATIF DES OPERATIONS": str,
@ -17,7 +24,30 @@ DF_TYPES = {
"annee": str,
"lot": str,
}
DEFAULT_FOURNISSEUR = "ROSIER MODICA MOTTEROZ SA"
class Line(BaseModel):
mois: int
annee: int
immeuble: str
lot: str
Champs: str
Categorie: str
Fournisseur: str
Libellé: str
Débit: float
Crédits: float
Dont_TVA: float
Locatif: float
Déductible: float
@field_validator(
"Débit", "Crédits", "Dont_TVA", "Locatif", "Déductible", mode="before"
)
def set_default_if_empty(cls, v):
if v == "":
return 0
return v
def is_it(page_text):
@ -41,51 +71,54 @@ def get_lot(txt):
return "*"
def keep_row(row):
return not any(
[
word.lower() in row[RECAPITULATIF_DES_OPERATIONS].lower()
for word in ["TOTAL", "TOTAUX", "Solde créditeur", "Solde débiteur"]
]
)
def extract(table, additionnal_fields: dict = {}):
"""Turn table to dictionary with additional fields"""
extracted = []
header = table[0]
for row in table[1:]:
if keep_row(row):
r = dict()
for i, value in enumerate(row):
if header[i] == "":
r["Fournisseur"] = value
else:
r[header[i]] = value
for k, v in additionnal_fields.items():
r[k] = v
if "honoraire" in row[RECAPITULATIF_DES_OPERATIONS].lower():
r["Fournisseur"] = DEFAULT_FOURNISSEUR
extracted.append(r)
return extracted
def table2df(tables):
dfs = []
for table in tables:
df = (
pd.DataFrame.from_records(table)
.replace("", np.nan)
.dropna(subset=["Débits", "Crédits"], how="all")
)
df["Fournisseur"] = df["Fournisseur"].fillna(method="ffill")
dfs.append(df)
df = pd.concat(dfs)
df["immeuble"] = df["immeuble"].apply(lambda x: x[0].capitalize())
df["lot"] = df["RECAPITULATIF DES OPERATIONS"].apply(get_lot)
return df.astype(DF_TYPES)
def fsm():
current_state = "total"
row = {}
line = yield
while True:
if line == HEADER_CHARGE:
line = yield
if current_state == "total":
if line[1].lower().split(" ")[0] in ["total", "totaux"]:
current_state = "new_champs"
line = yield
elif current_state == "new_champs":
if line[0] != "":
current_state = "new_cat_line"
row = {"Champs": line[0], "Categorie": "", "Fournisseur": ""}
line = yield
elif current_state == "new_cat_line":
if line[1].lower().split(" ")[0] in ["total", "totaux"]:
current_state = "new_champs"
line = yield
row = {}
elif line[2] != "" or line[3] != "":
row.update(
{
"Fournisseur": line[0] if line[0] != "" else row["Fournisseur"],
"Libellé": line[1],
"lot": get_lot(line[1]),
"Débit": line[2],
"Crédits": line[3],
"Dont_TVA": line[4],
"Locatif": line[5],
"Déductible": line[6],
}
)
line = yield row
row = {
"Champs": row["Champs"],
"Categorie": row["Categorie"],
"Fournisseur": row["Fournisseur"],
}
elif line[0] != "" and line[1] == "":
row.update({"Categorie": line[0]})
line = yield
elif line[1] != "":
row.update({"Categorie": line[1]})
line = yield
elif line[0] != "":
row.update({"Fournisseur": line[0]})
line = yield
else:
line = yield

View File

@ -1,22 +1,48 @@
import numpy as np
import pandas as pd
from pydantic import BaseModel, field_validator
DF_TYPES = {
"Locataires": str,
"Période": str,
"Loyers": float,
"Taxes": float,
"Provisions": float,
"Divers": str,
"Total": float,
"Réglés": float,
"Impayés": float,
"immeuble": str,
"mois": str,
"annee": str,
"Lot": str,
"Type": str,
}
HEADER_LOC = [
"Locataires",
"Période",
"Loyers",
"Taxes",
"Provisions",
"Divers",
"",
"Total",
"Réglés",
"Impayés",
]
class Line(BaseModel):
mois: int
annee: int
immeuble: str
Lot: str
Type: str
Locataire: str
Loyers: float
Taxes: float
Provisions: float
Divers: float
Total: float
Réglés: float
Impayés: float
@field_validator(
"Loyers",
"Taxes",
"Provisions",
"Divers",
"Total",
"Réglés",
"Impayés",
mode="before",
)
def set_default_if_empty(cls, v):
if v == "":
return 0
return v
def is_it(page_text):
@ -25,142 +51,43 @@ def is_it(page_text):
return False
def is_drop(row):
if "totaux" in row[0].lower():
return True
if not any(row):
return True
return False
def extract(table, additionnal_fields: dict = {}):
"""Turn table to dictionary with additional fields"""
extracted = []
header = table[0]
for row in table[1:]:
if not is_drop(row):
r = dict()
for i, value in enumerate(row):
if header[i] != "":
r[header[i]] = value
for k, v in additionnal_fields.items():
r[k] = v
extracted.append(r)
return extracted
def join_row(last, next):
row = {}
for key in last:
if last[key] == next[key]:
row[key] = last[key]
elif last[key] and next[key]:
row[key] = f"{last[key]}\n{next[key]}"
elif last[key]:
row[key] = last[key]
elif next[key]:
row[key] = next[key]
else:
row[key] = ""
return row
def join_tables(tables):
joined = tables[0]
for t in tables[1:]:
last_row = joined[-1]
if "totaux" not in last_row["Locataires"].lower():
first_row = t[0]
joined_row = join_row(last_row, first_row)
joined = joined[:-1] + [joined_row] + t[1:]
else:
joined += t
return joined
def parse_lot(string):
words = string.split(" ")
return {"Lot": "{:02d}".format(int(words[1])), "Type": " ".join(words[2:])}
def clean_type(string):
if "appartement" in string.lower():
return string[-2:]
return string
def join_row(table):
joined = []
for row in table:
if row["Locataires"].startswith("Lot"):
row.update(parse_lot(row["Locataires"]))
row["Locataires"] = ""
joined.append(row)
elif row["Locataires"] == "Rappel de Loyer":
last_row = joined[-1]
row.update(
{
"Lot": last_row["Lot"],
"Type": last_row["Type"],
"Locataires": last_row["Locataires"],
"Divers": "Rappel de Loyer",
}
)
joined.append(row)
elif row["Locataires"]:
last_row = joined.pop()
row_name = row["Locataires"].replace("\n", " ")
row.update({k: v for k, v in last_row.items() if v})
row["Locataires"] = last_row["Locataires"] + " " + row_name
joined.append(row)
else:
if row["Période"].startswith("Solde"):
last_row = joined.pop()
def fsm():
current_state = "new_row"
row = {}
line = yield
while True:
if line == HEADER_LOC:
line = yield
elif current_state == "new_row":
if line[0] != "" and line[0] != "TOTAUX":
row.update(parse_lot(line[0]))
current_state = "add_loc"
line = yield
elif current_state == "add_loc":
if line[0] != "":
row["Locataire"] = line[0]
current_state = "add_totaux"
line = yield
elif current_state == "add_totaux":
if line[0] == "Totaux":
row.update(
{
"Lot": last_row["Lot"],
"Type": last_row["Type"],
"Locataires": last_row["Locataires"],
"Loyers": line[2],
"Taxes": line[3],
"Provisions": line[4],
"Divers": line[5],
"Total": line[7],
"Réglés": line[8],
"Impayés": line[9],
}
)
joined.append(row)
elif row["Période"].startswith("Du"):
last_row = joined[-1]
row.update(
{
"Lot": last_row["Lot"],
"Type": last_row["Type"],
"Locataires": last_row["Locataires"],
}
)
joined.append(row)
return joined
def flat_tables(tables):
tables_flat = []
for table in tables:
tables_flat.extend(table)
return tables_flat
def table2df(tables):
tables = flat_tables(tables)
joined = join_row(tables)
df = pd.DataFrame.from_records(joined)
df["immeuble"] = df["immeuble"].apply(lambda x: x[0].capitalize())
df["Type"] = df["Type"].apply(clean_type)
numeric_cols = [k for k, v in DF_TYPES.items() if v == float]
df[numeric_cols] = df[numeric_cols].replace("", np.nan)
df = df.drop(df[(df["Locataires"] == "") & (df["Période"] == "")].index)
return df.astype(DF_TYPES)
line = yield row
row = {}
current_state = "new_row"
else:
line = yield

View File

@ -1,4 +1,74 @@
from pydantic import BaseModel, field_validator
HEADER_PATRIMOINE = [
"Etage",
"Lots",
"Type de lot",
"Nom du Locataire",
"Loyer Annuel",
"Début Bail",
"Fin Bail",
"Entrée",
"Départ",
"Révisé le",
"U",
"Dépôt Gar.",
]
class Line(BaseModel):
mois: int
annee: int
immeuble: str
Etage: str
Lot: str
Type: str
Locataire: str
Loyer_annuel: int
Debut_bail: str
Fin_bail: str
Entree: str
Depart: str
Revision_bail: str
Usage: str
Depot_garantie: float
@field_validator("Loyer_annuel", "Depot_garantie", mode="before")
def set_default_if_empty(cls, v):
if v == "":
return 0
return v
def is_it(page_text):
if "VOTRE PATRIMOINE" in page_text:
return True
return False
def fsm():
current_state = "new_line"
row = {}
line = yield
while True:
if line == HEADER_PATRIMOINE:
line = yield
if current_state == "new_line":
if line[0] != "":
row = {
"Etage": line[0],
"Lot": line[1][-2:] if line[1] != "" else row["Lot"],
"Type": line[2] if line[2] != "" else row["Type"],
"Locataire": line[3],
"Loyer_annuel": line[4].replace(" ", ""),
"Debut_bail": line[5],
"Fin_bail": line[6],
"Entree": line[7],
"Depart": line[8],
"Revision_bail": line[9],
"Usage": line[10],
"Depot_garantie": line[11].replace(" ", ""),
}
line = yield row
else:
line = yield

View File

@ -4,7 +4,7 @@ from pathlib import Path
import click
from .extract import extract_save
from .extract import extract_save, extract_plan
from .join import join_excel
@ -51,18 +51,45 @@ def on(pdf_file, dest):
@extract.command()
@click.option("--src", help="Tous les fichiers dans folder", default="./")
@click.option(
"--src", help="Tous les fichiers dans folder (de façon récursive)", default="./"
)
@click.option("--dest", help="Où mettre les fichiers produits", default="./")
def all(src, dest):
p = Path(src)
@click.option(
"--only-plan",
help="Ne produit rien mais indique les changements",
default=False,
is_flag=True,
)
@click.option(
"--force",
help="Écrase les fichiers produits précédemment",
default=False,
is_flag=True,
)
def all(src, dest, force, only_plan):
src_path = Path(src)
d = Path(dest)
d.mkdir(exist_ok=True)
dest = Path(dest)
dest.mkdir(exist_ok=True)
pdf_files = [x for x in p.iterdir() if ".pdf" in str(x)]
for pdf_file in pdf_files:
for pdf_file in src_path.rglob("**/*.pdf"):
relative_path = pdf_file.relative_to(src_path)
files_dest = dest / relative_path.parent
logging.info(f"Found {pdf_file}")
extract_save(pdf_file, d)
plan_dest = extract_plan(pdf_file, files_dest)
save = []
for k, p in plan_dest.items():
if not p.exists() or force:
save.append(k)
if only_plan:
for s in save:
logging.info(f"Planing to create {plan_dest[s]}")
else:
files_dest.mkdir(parents=True, exist_ok=True)
extract_save(pdf_file, files_dest, save)
@main.command()

View File

@ -1,3 +1,5 @@
pdfplumber
numpy
pandas
click
openpyxl