import numpy as np import pandas as pd def extract_charge(table): """From pdfplumber table extract the charge dataframe""" df = ( pd.DataFrame(table[1:], columns=table[0]) .replace("", np.nan) .dropna(subset=["Débits"]) .astype( { "Débits": "float64", "Crédits": "float64", "Dont T.V.A.": "float64", "Locatif": "float64", "Déductible": "float64", } ) ) drop_index = df[ df["RECAPITULATIF DES OPERATIONS"].str.contains("TOTAUX", case=False) | df["RECAPITULATIF DES OPERATIONS"].str.contains("solde", case=False) ].index df.drop(drop_index, inplace=True) return df