import re import numpy as np import pandas as pd RECAPITULATIF_DES_OPERATIONS = 1 DF_TYPES = { "Fournisseur": str, "RECAPITULATIF DES OPERATIONS": str, "Débits": float, "Crédits": float, "Dont T.V.A.": float, "Locatif": float, "Déductible": float, "immeuble": str, "mois": str, "annee": str, "lot": str, } def is_it(page_text): if ( "RECAPITULATIF DES OPERATIONS" in page_text and "COMPTE RENDU DE GESTION" not in page_text ): return True return False def get_lot(txt): """Return lot number from "RECAPITULATIF DES OPERATIONS" """ regex = r"[BSM](\d+)(?=\s*-)" result = re.findall(regex, txt) if result: return "{:02d}".format(int(result[0])) return "*" def keep_row(row): return not any( [ word.lower() in row[RECAPITULATIF_DES_OPERATIONS].lower() for word in ["TOTAL", "TOTAUX", "Solde créditeur", "Solde débiteur"] ] ) def extract(table, additionnal_fields: dict = {}): """Turn table to dictionary with additional fields""" extracted = [] header = table[0] for row in table[1:]: if keep_row(row): r = dict() for i, value in enumerate(row): if header[i] == "": r["Fournisseur"] = value else: r[header[i]] = value for k, v in additionnal_fields.items(): r[k] = v if "honoraire" in row[RECAPITULATIF_DES_OPERATIONS]: r["Fournisseur"] = "IMI GERANCE" extracted.append(r) return extracted def table2df(tables): dfs = [] for table in tables: df = ( pd.DataFrame.from_records(table) .replace("", np.nan) .dropna(subset=["Débits", "Crédits"], how="all") ) df["Fournisseur"] = df["Fournisseur"].fillna(method="ffill") dfs.append(df) df = pd.concat(dfs) df["immeuble"] = df["immeuble"].apply(lambda x: x[0].capitalize()) print(df.columns) df["lot"] = df["RECAPITULATIF DES OPERATIONS"].apply(get_lot) return df.astype(DF_TYPES, errors="ignore")