import numpy as np import pandas as pd DF_TYPES = { "Locataires": str, "Période": str, "Loyers": float, "Taxes": float, "Provisions": float, "Divers": str, "Total": float, "Réglés": float, "Impayés": float, "immeuble": str, "mois": str, "annee": str, "Lot": str, "Type": str, } def is_it(page_text): if "SITUATION DES LOCATAIRES" in page_text: return True return False def is_drop(row): if "totaux" in row[0].lower(): return True if not any(row): return True return False def extract(table, additionnal_fields: dict = {}): """Turn table to dictionary with additional fields""" extracted = [] header = table[0] for row in table[1:]: if not is_drop(row): r = dict() for i, value in enumerate(row): if header[i] != "": r[header[i]] = value for k, v in additionnal_fields.items(): r[k] = v extracted.append(r) return extracted def join_row(last, next): row = {} for key in last: if last[key] == next[key]: row[key] = last[key] elif last[key] and next[key]: row[key] = f"{last[key]}\n{next[key]}" elif last[key]: row[key] = last[key] elif next[key]: row[key] = next[key] else: row[key] = "" return row def join_tables(tables): joined = tables[0] for t in tables[1:]: last_row = joined[-1] if "totaux" not in last_row["Locataires"].lower(): first_row = t[0] joined_row = join_row(last_row, first_row) joined = joined[:-1] + [joined_row] + t[1:] else: joined += t return joined def parse_lot(string): words = string.split(" ") return {"Lot": "{:02d}".format(int(words[1])), "Type": " ".join(words[2:])} def clean_type(string): if "appartement" in string.lower(): return string[-2:] return string def join_row(table): joined = [] for row in table: if row["Locataires"].startswith("Lot"): row.update(parse_lot(row["Locataires"])) row["Locataires"] = "" joined.append(row) elif row["Locataires"] == "Rappel de Loyer": last_row = joined[-1] row.update( { "Lot": last_row["Lot"], "Type": last_row["Type"], "Locataires": last_row["Locataires"], "Divers": "Rappel de Loyer", } ) joined.append(row) elif row["Locataires"]: last_row = joined.pop() row_name = row["Locataires"].replace("\n", " ") row.update({k: v for k, v in last_row.items() if v}) row["Locataires"] = last_row["Locataires"] + " " + row_name joined.append(row) else: if row["Période"].startswith("Solde"): last_row = joined.pop() row.update( { "Lot": last_row["Lot"], "Type": last_row["Type"], "Locataires": last_row["Locataires"], } ) joined.append(row) elif row["Période"].startswith("Du"): last_row = joined[-1] row.update( { "Lot": last_row["Lot"], "Type": last_row["Type"], "Locataires": last_row["Locataires"], } ) joined.append(row) else: pass return joined def flat_tables(tables): tables_flat = [] for table in tables: tables_flat.extend(table) return tables_flat def table2df(tables): tables = flat_tables(tables) joined = join_row(tables) df = pd.DataFrame.from_records(joined) df["immeuble"] = df["immeuble"].apply(lambda x: x[0].capitalize()) df["Type"] = df["Type"].apply(clean_type) numeric_cols = [k for k, v in DF_TYPES.items() if v == float] df[numeric_cols] = df[numeric_cols].replace("", np.nan) return df.astype(DF_TYPES)