pdf_auralia/pdf_oralia/extract_locataire.py

56 lines
1.4 KiB
Python

import pandas as pd
def parse_above_loc(content):
row = {}
try:
app, loc = content.split("\n")
except ValueError:
row["lot"] = ""
row["type"] = ""
row["locataire"] = content
else:
app_ = app.split(" ")
row["lot"] = app_[1]
row["type"] = " ".join(app_[2:])
row["locataire"] = loc
return pd.Series(row)
def extract_situation_loc(table, mois, annee):
"""From pdfplumber table extract locataire df"""
try:
df = pd.DataFrame(table[1:], columns=table[0])
except IndexError:
print(table)
rows = []
for i, row in df[df["Locataires"] == "Totaux"].iterrows():
above_row_loc = df.iloc[i - 1]["Locataires"]
up_row = pd.concat(
[
row,
parse_above_loc(above_row_loc),
]
)
rows.append(up_row)
df_cleaned = pd.concat(rows, axis=1).T
df_cleaned.drop(["Locataires", "", "Période"], axis=1, inplace=True)
df_cleaned = df_cleaned.astype(
{
"Loyers": "float64",
"Taxes": "float64",
"Provisions": "float64",
"Divers": "float64",
"Total": "float64",
"Réglés": "float64",
"Impayés": "float64",
},
errors="ignore",
)
df_cleaned = df_cleaned.assign(mois=mois, annee=annee)
return df_cleaned