Feat: convert stagging2gold
This commit is contained in:
parent
9e5541a770
commit
25ede1789a
109
scripts/flux.py
Normal file
109
scripts/flux.py
Normal file
@ -0,0 +1,109 @@
|
||||
import logging
|
||||
from abc import abstractmethod
|
||||
from collections.abc import Callable
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
from pydantic import BaseModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
class Source(BaseModel):
|
||||
filename: str
|
||||
|
||||
@abstractmethod
|
||||
def get_df(self) -> pd.DataFrame:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ExcelSource(Source):
|
||||
sheet_name: str
|
||||
|
||||
def get_df(self, base_path: Path) -> pd.DataFrame:
|
||||
filepath = base_path / self.filename
|
||||
logger.debug(f"Get content of {filepath}")
|
||||
return pd.read_excel(filepath, sheet_name=self.sheet_name)
|
||||
|
||||
|
||||
class CSVSource(Source):
|
||||
options: dict
|
||||
|
||||
def get_df(self, base_path: Path) -> pd.DataFrame:
|
||||
filepath = base_path / self.filename
|
||||
logger.debug(f"Get content of {filepath}")
|
||||
return pd.read_csv(filepath, **self.options)
|
||||
|
||||
|
||||
class Flux(BaseModel):
|
||||
sources: list[Source]
|
||||
transformation: Callable
|
||||
extra_kwrds: dict = {}
|
||||
|
||||
|
||||
def to_csv(df, dest_basename):
|
||||
dest = dest_basename.parent / (dest_basename.name + ".csv")
|
||||
if dest.exists():
|
||||
df.to_csv(dest, mode="a", header=False, index=False)
|
||||
else:
|
||||
df.to_csv(dest, index=False)
|
||||
return dest
|
||||
|
||||
|
||||
def write_split_by(
|
||||
df: pd.DataFrame, column: str, dest_path: Path, writing_func
|
||||
) -> list[Path]:
|
||||
wrote_files = []
|
||||
|
||||
for col_value in df[column].unique():
|
||||
filtered_df = df[df[column] == col_value]
|
||||
|
||||
dest_basename = dest_path / f"{col_value}"
|
||||
dest = writing_func(filtered_df, dest_basename)
|
||||
wrote_files.append(dest)
|
||||
|
||||
return wrote_files
|
||||
|
||||
|
||||
def extract_sources(sources: list[Source], base_path: Path = Path()):
|
||||
for src in sources:
|
||||
if "*" in src.filename:
|
||||
expanded_src = [
|
||||
src.model_copy(update={"filename": p}) for p in Path.glob(src.filename)
|
||||
]
|
||||
yield from extract_sources(expanded_src, base_path)
|
||||
else:
|
||||
filepath = base_path / src.filename
|
||||
assert filepath.exists
|
||||
yield src.filename, src.get_df(base_path)
|
||||
|
||||
|
||||
def split_duplicates(
|
||||
df, origin: str, duplicated: dict[str, pd.DataFrame]
|
||||
) -> [pd.DataFrame, dict[str, pd.DataFrame]]:
|
||||
duplicates = df.duplicated()
|
||||
no_duplicates = df[~duplicates]
|
||||
duplicated[origin] = df[duplicates]
|
||||
return no_duplicates, duplicated
|
||||
|
||||
|
||||
def consume_fluxes(
|
||||
fluxes: dict[str, Flux], origin_path: Path, dest_path: Path, writing_func=to_csv
|
||||
):
|
||||
duplicated = {}
|
||||
wrote_files = []
|
||||
|
||||
for name, flux in fluxes.items():
|
||||
print(name)
|
||||
logger.info(f"Processing flux {name}")
|
||||
src_df = []
|
||||
for filename, df in extract_sources(flux.sources, origin_path):
|
||||
df, duplicated = split_duplicates(df, str(filename), duplicated)
|
||||
src_df.append(df)
|
||||
|
||||
df = flux.transformation(src_df, **flux.extra_kwrds)
|
||||
|
||||
files = write_split_by(df, "Année", dest_path, writing_func)
|
||||
wrote_files += files
|
||||
return wrote_files
|
@ -1,84 +1,17 @@
|
||||
import logging
|
||||
from collections.abc import Callable
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
from pydantic import BaseModel
|
||||
|
||||
from scripts.flux import consume_fluxes
|
||||
|
||||
from .flux import ExcelSource, Flux
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
class Source(BaseModel):
|
||||
filename: str
|
||||
sheet_name: str = ""
|
||||
|
||||
|
||||
class Flux(BaseModel):
|
||||
sources: list[Source]
|
||||
transformation: Callable
|
||||
extra_kwrds: dict = {}
|
||||
|
||||
|
||||
def to_csv(df, dest_basename):
|
||||
dest = dest_basename.parent / (dest_basename.name + ".csv")
|
||||
if dest.exists():
|
||||
df.to_csv(dest, mode="a", header=False, index=False)
|
||||
else:
|
||||
df.to_csv(dest, index=False)
|
||||
return dest
|
||||
|
||||
|
||||
def write_split_by(
|
||||
df: pd.DataFrame, column: str, dest_path: Path, writing_func
|
||||
) -> list[Path]:
|
||||
wrote_files = []
|
||||
|
||||
for col_value in df[column].unique():
|
||||
filtered_df = df[df[column] == col_value]
|
||||
|
||||
dest_basename = dest_path / f"{col_value}"
|
||||
dest = writing_func(filtered_df, dest_basename)
|
||||
wrote_files.append(dest)
|
||||
|
||||
return wrote_files
|
||||
|
||||
|
||||
def extract_sources(sources: list[Source], base_path: Path = Path()):
|
||||
for src in sources:
|
||||
filepath = base_path / src.filename
|
||||
assert filepath.exists
|
||||
yield src.filename, pd.read_excel(filepath, sheet_name=src.sheet_name)
|
||||
|
||||
|
||||
def split_duplicates(
|
||||
df, origin: str, duplicated: dict[str, pd.DataFrame]
|
||||
) -> [pd.DataFrame, dict[str, pd.DataFrame]]:
|
||||
duplicates = df.duplicated()
|
||||
no_duplicates = df[~duplicates]
|
||||
duplicated[origin] = df[duplicates]
|
||||
return no_duplicates, duplicated
|
||||
|
||||
|
||||
def crg(history_path: Path, staging_path: Path, metadatas: dict, writing_func=to_csv):
|
||||
duplicated = {}
|
||||
wrote_files = []
|
||||
|
||||
for name, metadata in metadatas.items():
|
||||
logger.debug(f"Processing {name}")
|
||||
src_df = []
|
||||
for filename, df in extract_sources(metadata.sources, history_path):
|
||||
df, duplicated = split_duplicates(df, str(filename), duplicated)
|
||||
src_df.append(df)
|
||||
|
||||
df = metadata.transformation(src_df, **metadata.extra_kwrds)
|
||||
|
||||
files = write_split_by(df, "Année", staging_path, writing_func)
|
||||
wrote_files += files
|
||||
return wrote_files
|
||||
|
||||
|
||||
def extract_cat(cat):
|
||||
def extract_cat(cat: pd.DataFrame):
|
||||
cat_drop = list(cat[cat["Nouvelles"] == "NE PAS IMPORTER"]["Anciennes"])
|
||||
cat_trans = cat[cat["Nouvelles"] != "NE PAS IMPORTER"]
|
||||
|
||||
@ -89,7 +22,9 @@ def extract_cat(cat):
|
||||
return trans, cat_drop
|
||||
|
||||
|
||||
def trans_2017_2021(dfs, **kwrds):
|
||||
def trans_2017_2021(
|
||||
dfs: list[pd.DataFrame], stagging_columns: list[str], **kwrds
|
||||
) -> pd.DataFrame:
|
||||
df, cat = dfs
|
||||
cat_trans, cat_drop = extract_cat(cat)
|
||||
|
||||
@ -107,10 +42,12 @@ def trans_2017_2021(dfs, **kwrds):
|
||||
Fournisseur="",
|
||||
)
|
||||
|
||||
return df
|
||||
return df[stagging_columns]
|
||||
|
||||
|
||||
def trans_2022_charge(dfs, **kwrds):
|
||||
def trans_2022_charge(
|
||||
dfs: list[pd.DataFrame], stagging_columns: list[str], **kwrds
|
||||
) -> pd.DataFrame:
|
||||
df = dfs[0]
|
||||
df = df.assign(
|
||||
Immeuble=df["immeuble"],
|
||||
@ -126,10 +63,12 @@ def trans_2022_charge(dfs, **kwrds):
|
||||
Régie="Oralia - Gelas",
|
||||
Libellé="",
|
||||
)
|
||||
return df
|
||||
return df[stagging_columns]
|
||||
|
||||
|
||||
def trans_2022_loc(dfs, **kwrds):
|
||||
def trans_2022_loc(
|
||||
dfs: list[pd.DataFrame], stagging_columns: list[str], **kwrds
|
||||
) -> pd.DataFrame:
|
||||
df = dfs[0]
|
||||
df = df.assign(
|
||||
Immeuble=df["immeuble"],
|
||||
@ -144,10 +83,12 @@ def trans_2022_loc(dfs, **kwrds):
|
||||
Régie="Oralia - Gelas",
|
||||
Libellé="",
|
||||
)
|
||||
return df
|
||||
return df[stagging_columns]
|
||||
|
||||
|
||||
def trans_2023(dfs, year, **kwrds):
|
||||
def trans_2023(
|
||||
dfs: list[pd.DataFrame], year: str, stagging_columns: list[str], **kwrds
|
||||
) -> pd.DataFrame:
|
||||
df = dfs[0]
|
||||
df = df.assign(
|
||||
Débit=df["Débit"].fillna(0),
|
||||
@ -155,43 +96,60 @@ def trans_2023(dfs, year, **kwrds):
|
||||
Lot=df["Immeuble"].astype(str) + df["Porte"].astype("str").str.zfill(2),
|
||||
Année=year,
|
||||
)
|
||||
return df
|
||||
return df[stagging_columns]
|
||||
|
||||
|
||||
METADATAS = {
|
||||
STAGGING_COLUMNS = [
|
||||
"Régie",
|
||||
"Immeuble",
|
||||
"Porte",
|
||||
"Lot",
|
||||
"Année",
|
||||
"Mois",
|
||||
"Catégorie",
|
||||
"Fournisseur",
|
||||
"Libellé",
|
||||
"Débit",
|
||||
"Crédit",
|
||||
]
|
||||
|
||||
FLUXES = {
|
||||
"2017 2021 - charge et locataire.xlsx": Flux(
|
||||
sources=[
|
||||
Source(
|
||||
ExcelSource(
|
||||
filename="2017 2021 - charge et locataire.xlsx", sheet_name="DB CRG"
|
||||
),
|
||||
Source(
|
||||
ExcelSource(
|
||||
filename="2017 2021 - charge et locataire.xlsx",
|
||||
sheet_name="Catégories",
|
||||
),
|
||||
],
|
||||
transformation=trans_2017_2021,
|
||||
extra_kwrds={"stagging_columns": STAGGING_COLUMNS},
|
||||
),
|
||||
"2022 - charge.xlsx": Flux(
|
||||
sources=[
|
||||
Source(filename="2022 - charge.xlsx", sheet_name="Sheet1"),
|
||||
ExcelSource(filename="2022 - charge.xlsx", sheet_name="Sheet1"),
|
||||
],
|
||||
transformation=trans_2022_charge,
|
||||
extra_kwrds={"stagging_columns": STAGGING_COLUMNS},
|
||||
),
|
||||
"2022 - locataire.xlsx": Flux(
|
||||
sources=[
|
||||
Source(filename="2022 - locataire.xlsx", sheet_name="Sheet1"),
|
||||
ExcelSource(filename="2022 - locataire.xlsx", sheet_name="Sheet1"),
|
||||
],
|
||||
transformation=trans_2022_loc,
|
||||
extra_kwrds={"stagging_columns": STAGGING_COLUMNS},
|
||||
),
|
||||
"2023 - charge et locataire.xlsx": Flux(
|
||||
sources=[
|
||||
Source(
|
||||
ExcelSource(
|
||||
filename="2023 - charge et locataire.xlsx",
|
||||
sheet_name="DB CRG 2023 ...",
|
||||
),
|
||||
],
|
||||
transformation=trans_2023,
|
||||
extra_kwrds={"year": 2023},
|
||||
extra_kwrds={"year": 2023, "stagging_columns": STAGGING_COLUMNS},
|
||||
),
|
||||
}
|
||||
|
||||
@ -208,5 +166,5 @@ if __name__ == "__main__":
|
||||
staging_crg_path = staging_path / "CRG"
|
||||
assert staging_crg_path.exists()
|
||||
|
||||
crg_files = crg(history_crg_path, staging_crg_path, METADATAS)
|
||||
crg_files = consume_fluxes(FLUXES, history_crg_path, staging_crg_path)
|
||||
print(crg_files)
|
||||
|
69
scripts/stagging_gold.py
Normal file
69
scripts/stagging_gold.py
Normal file
@ -0,0 +1,69 @@
|
||||
import logging
|
||||
from collections.abc import Callable
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from scripts.flux import CSVSource, Flux, consume_fluxes
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
def feature_crg(dfs: list[pd.DataFrame]) -> pd.DataFrame:
|
||||
df = dfs[0]
|
||||
df = df.assign(
|
||||
Impact=df["Crédit"] - df["Débit"],
|
||||
)
|
||||
return df
|
||||
|
||||
|
||||
GOLD_COLUMNS = [
|
||||
"Régie",
|
||||
"Immeuble",
|
||||
"Porte",
|
||||
"Lot",
|
||||
"Année",
|
||||
"Mois",
|
||||
"Catégorie",
|
||||
"Fournisseur",
|
||||
"Libellé",
|
||||
"Débit",
|
||||
"Crédit",
|
||||
"Impact",
|
||||
]
|
||||
|
||||
|
||||
def build_crg_fluxes(
|
||||
crg_path: Path, pattern: str, transformation: Callable, csv_options: dict = {}
|
||||
) -> dict[str, Flux]:
|
||||
fluxes = {}
|
||||
for crg in crg_path.glob(pattern):
|
||||
fluxes[f"CRG - {crg}"] = Flux(
|
||||
sources=[CSVSource(filename=crg.name, options=csv_options)],
|
||||
transformation=transformation,
|
||||
)
|
||||
return fluxes
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
data_path = Path("datas/")
|
||||
assert data_path.exists()
|
||||
|
||||
staging_path = data_path / "staging"
|
||||
assert staging_path.exists()
|
||||
staging_crg_path = staging_path / "CRG"
|
||||
assert staging_crg_path.exists()
|
||||
|
||||
gold_path = data_path / "gold"
|
||||
assert gold_path.exists()
|
||||
gold_crg_path = gold_path / "CRG"
|
||||
assert gold_crg_path.exists()
|
||||
|
||||
fluxes = build_crg_fluxes(
|
||||
crg_path=staging_crg_path, pattern="*.csv", transformation=feature_crg
|
||||
)
|
||||
crg_files = consume_fluxes(
|
||||
fluxes=fluxes, origin_path=staging_crg_path, dest_path=gold_crg_path
|
||||
)
|
||||
print(crg_files)
|
Loading…
Reference in New Issue
Block a user