Compare commits

..

2 Commits

Author SHA1 Message Date
215e26b84f Feat: adapt to new excel format 2024-04-15 11:59:45 +02:00
b60fa3be17 Feat: add excel export for mart 2024-04-15 11:59:32 +02:00
4 changed files with 74 additions and 32 deletions

View File

@ -79,7 +79,11 @@ def feature():
def datamart(): def datamart():
from .gold_mart import FLUXES_LOT from .gold_mart import FLUXES_LOT
consume_fluxes(fluxes=FLUXES_LOT, origin_path=GOLD_PATH, dest_path=MART_PATH) consume_fluxes(
fluxes=FLUXES_LOT,
origin_path=GOLD_PATH,
dest_path=MART_PATH,
)
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -4,7 +4,7 @@ from collections.abc import Callable
from pathlib import Path from pathlib import Path
import pandas as pd import pandas as pd
from pydantic import BaseModel from pydantic import BaseModel, Field
class Source(BaseModel): class Source(BaseModel):
@ -38,21 +38,51 @@ class Transformation(BaseModel):
extra_kwrds: dict = {} extra_kwrds: dict = {}
def to_csv(df, dest_basename: Path) -> Path:
dest = dest_basename.parent / (dest_basename.stem + ".csv")
if dest.exists():
df.to_csv(dest, mode="a", header=False, index=False)
else:
df.to_csv(dest, index=False)
return dest
def to_excel(df, dest_basename: Path) -> Path:
dest = dest_basename.parent / (dest_basename.stem + ".xlsx")
if dest.exists():
raise ValueError(f"The destination exits {dest}")
else:
df.to_excel(dest)
return dest
class Destination(BaseModel): class Destination(BaseModel):
name: str name: str
writer: Callable = Field(to_csv)
def _write(
self,
df: pd.DataFrame,
dest_basename: Path,
writing_func: Callable | None = None,
) -> Path:
if writing_func is None:
writing_func = self.writer
return writing_func(df, dest_basename)
def write( def write(
self, df: pd.DataFrame, dest_path: Path, writing_func: Callable self, df: pd.DataFrame, dest_path: Path, writing_func: Callable | None = None
) -> list[Path]: ) -> list[Path]:
dest_basename = dest_path / self.name dest_basename = dest_path / self.name
return [writing_func(df, dest_basename)] return [self._write(df, dest_basename, writing_func)]
class SplitDestination(Destination): class SplitDestination(Destination):
split_column: str split_column: str
def write( def write(
self, df: pd.DataFrame, dest_path: Path, writing_func: Callable self, df: pd.DataFrame, dest_path: Path, writing_func: Callable | None = None
) -> list[Path]: ) -> list[Path]:
wrote_files = [] wrote_files = []
@ -60,7 +90,7 @@ class SplitDestination(Destination):
filtered_df = df[df[self.split_column] == col_value] filtered_df = df[df[self.split_column] == col_value]
dest_basename = dest_path / f"{self.name}-{col_value}" dest_basename = dest_path / f"{self.name}-{col_value}"
dest = writing_func(filtered_df, dest_basename) dest = self._write(filtered_df, dest_basename, writing_func)
wrote_files.append(dest) wrote_files.append(dest)
return wrote_files return wrote_files
@ -72,15 +102,6 @@ class Flux(BaseModel):
destination: Destination destination: Destination
def to_csv(df, dest_basename: Path) -> Path:
dest = dest_basename.parent / (dest_basename.stem + ".csv")
if dest.exists():
df.to_csv(dest, mode="a", header=False, index=False)
else:
df.to_csv(dest, index=False)
return dest
def write_split_by( def write_split_by(
df: pd.DataFrame, column: str, dest_path: Path, name: str, writing_func df: pd.DataFrame, column: str, dest_path: Path, name: str, writing_func
) -> list[Path]: ) -> list[Path]:
@ -119,16 +140,13 @@ def split_duplicates(
return no_duplicates, duplicated return no_duplicates, duplicated
def consume_fluxes( def consume_flux(
fluxes: dict[str, Flux], name: str,
flux: Flux,
origin_path: Path, origin_path: Path,
dest_path: Path, dest_path: Path,
writing_func=to_csv, duplicated={},
): ):
duplicated = {}
wrote_files = []
for name, flux in fluxes.items():
logging.info(f"Consume {name}") logging.info(f"Consume {name}")
src_df = [] src_df = []
for filename, df in extract_sources(flux.sources, origin_path): for filename, df in extract_sources(flux.sources, origin_path):
@ -138,7 +156,22 @@ def consume_fluxes(
logging.info(f"Execute {flux.transformation.function.__name__}") logging.info(f"Execute {flux.transformation.function.__name__}")
df = flux.transformation.function(src_df, **flux.transformation.extra_kwrds) df = flux.transformation.function(src_df, **flux.transformation.extra_kwrds)
files = flux.destination.write(df, dest_path, writing_func)
files = flux.destination.write(df, dest_path)
logging.info(f"{files} written") logging.info(f"{files} written")
return files
def consume_fluxes(
fluxes: dict[str, Flux],
origin_path: Path,
dest_path: Path,
):
duplicated = {}
wrote_files = []
for name, flux in fluxes.items():
files = consume_flux(name, flux, origin_path, dest_path, duplicated)
wrote_files += files wrote_files += files
return wrote_files return wrote_files

View File

@ -11,6 +11,7 @@ from scripts.flux import (
SplitDestination, SplitDestination,
Transformation, Transformation,
consume_fluxes, consume_fluxes,
to_excel,
) )
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -26,7 +27,9 @@ FLUXES_LOT = {
"Lots": Flux( "Lots": Flux(
sources=[CSVSource(filename="CRG/crg-*.csv")], sources=[CSVSource(filename="CRG/crg-*.csv")],
transformation=Transformation(function=build_lots), transformation=Transformation(function=build_lots),
destination=SplitDestination(name="Lot/lot", split_column="Lot"), destination=SplitDestination(
name="Lot/lot", split_column="Lot", writer=to_excel
),
), ),
} }
@ -75,6 +78,8 @@ if __name__ == "__main__":
pnl_fluxes = {} pnl_fluxes = {}
files = consume_fluxes( files = consume_fluxes(
fluxes=pnl_fluxes, origin_path=gold_path, dest_path=mart_path fluxes=pnl_fluxes,
origin_path=gold_path,
dest_path=mart_path,
) )
print(files) print(files)

View File

@ -12,9 +12,9 @@ logger.setLevel(logging.DEBUG)
def extract_cat(cat: pd.DataFrame): def extract_cat(cat: pd.DataFrame):
cat_drop = list(cat[cat["Nouvelles"] == "NE PAS IMPORTER"]["Anciennes"]) cat_drop = list(cat[cat["Nouvelles"] == "NE PAS IMPORTER"])
# cat_drop = list(cat[cat["Nouvelles"] == "NE PAS IMPORTER"]["Anciennes"])
cat_trans = cat[cat["Nouvelles"] != "NE PAS IMPORTER"] cat_trans = cat[cat["Nouvelles"] != "NE PAS IMPORTER"]
trans = {} trans = {}
for _, (old, new) in cat_trans.iterrows(): for _, (old, new) in cat_trans.iterrows():
trans[old] = new trans[old] = new
@ -140,7 +140,7 @@ FLUXES_CRG = {
), ),
"2022 - charge.xlsx": Flux( "2022 - charge.xlsx": Flux(
sources=[ sources=[
ExcelSource(filename="2022 - charge.xlsx", sheet_name="Sheet1"), ExcelSource(filename="2022 - charge.xlsx", sheet_name="DB CRG"),
], ],
transformation=Transformation( transformation=Transformation(
function=trans_2022_charge, function=trans_2022_charge,