Feat: import score dataframe functions
This commit is contained in:
parent
7553628306
commit
10b9954c05
0
recopytex/datalib/__init__.py
Normal file
0
recopytex/datalib/__init__.py
Normal file
131
recopytex/datalib/on_score_column.py
Normal file
131
recopytex/datalib/on_score_column.py
Normal file
@ -0,0 +1,131 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# encoding: utf-8
|
||||||
|
|
||||||
|
from math import ceil
|
||||||
|
|
||||||
|
|
||||||
|
def score_to_mark(x, score_max, rounding=lambda x: round(x, 2)):
|
||||||
|
"""Compute the mark from the score
|
||||||
|
|
||||||
|
if the item is leveled then the score is multiply by the score_rate
|
||||||
|
otherwise it copies the score
|
||||||
|
|
||||||
|
:param x: dictionnary with "is_leveled", "score" and "score_rate" keys
|
||||||
|
:param score_max:
|
||||||
|
:param rounding: rounding mark function
|
||||||
|
:return: the mark
|
||||||
|
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
|
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
|
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
|
... "score":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1.2, 2, 3],
|
||||||
|
... }
|
||||||
|
>>> df = pd.DataFrame(d)
|
||||||
|
>>> df.loc[0]
|
||||||
|
Eleve E1
|
||||||
|
score_rate 1
|
||||||
|
is_leveled 0
|
||||||
|
score 1.0
|
||||||
|
Name: 0, dtype: object
|
||||||
|
>>> score_to_mark(df.loc[0], 3)
|
||||||
|
1.0
|
||||||
|
>>> df.loc[10]
|
||||||
|
Eleve E2
|
||||||
|
score_rate 2
|
||||||
|
is_leveled 1
|
||||||
|
score 2.0
|
||||||
|
Name: 10, dtype: object
|
||||||
|
>>> score_to_mark(df.loc[10], 3)
|
||||||
|
1.33
|
||||||
|
>>> from .on_value import round_half_point
|
||||||
|
>>> score_to_mark(df.loc[10], 3, round_half_point)
|
||||||
|
1.5
|
||||||
|
>>> df.loc[1]
|
||||||
|
Eleve E1
|
||||||
|
score_rate 1
|
||||||
|
is_leveled 0
|
||||||
|
score 0.33
|
||||||
|
Name: 1, dtype: object
|
||||||
|
>>> score_to_mark(df.loc[1], 3)
|
||||||
|
0.33
|
||||||
|
"""
|
||||||
|
if x["is_leveled"]:
|
||||||
|
if x["score"] not in list(range(score_max + 1)):
|
||||||
|
raise ValueError(f"The evaluation is out of range: {x['score']} at {x}")
|
||||||
|
return rounding(x["score"] * x["score_rate"] / score_max)
|
||||||
|
|
||||||
|
return rounding(x["score"])
|
||||||
|
|
||||||
|
|
||||||
|
def score_to_level(x, level_max=3):
|
||||||
|
"""Compute the level (".",0,1,2,3).
|
||||||
|
|
||||||
|
:param x: dictionnary with "is_leveled", "score" and "score_rate" keys
|
||||||
|
:return: the level
|
||||||
|
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
|
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
|
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
|
... "score":[1, 0.33, 0, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
||||||
|
... }
|
||||||
|
>>> df = pd.DataFrame(d)
|
||||||
|
>>> df
|
||||||
|
Eleve score_rate is_leveled score
|
||||||
|
0 E1 1 0 1.000
|
||||||
|
1 E1 1 0 0.330
|
||||||
|
2 E1 2 0 0.000
|
||||||
|
3 E1 2 0 1.500
|
||||||
|
4 E1 2 1 1.000
|
||||||
|
5 E1 2 1 3.000
|
||||||
|
6 E2 1 0 0.666
|
||||||
|
7 E2 1 0 1.000
|
||||||
|
8 E2 2 0 1.500
|
||||||
|
9 E2 2 0 1.000
|
||||||
|
10 E2 2 1 2.000
|
||||||
|
11 E2 2 1 3.000
|
||||||
|
>>> df.apply(score_to_level, axis=1)
|
||||||
|
0 3
|
||||||
|
1 1
|
||||||
|
2 0
|
||||||
|
3 3
|
||||||
|
4 1
|
||||||
|
5 3
|
||||||
|
6 2
|
||||||
|
7 3
|
||||||
|
8 3
|
||||||
|
9 2
|
||||||
|
10 2
|
||||||
|
11 3
|
||||||
|
dtype: int64
|
||||||
|
>>> df.apply(lambda x: score_to_level(x, 5), axis=1)
|
||||||
|
0 5
|
||||||
|
1 2
|
||||||
|
2 0
|
||||||
|
3 4
|
||||||
|
4 1
|
||||||
|
5 3
|
||||||
|
6 4
|
||||||
|
7 5
|
||||||
|
8 4
|
||||||
|
9 3
|
||||||
|
10 2
|
||||||
|
11 3
|
||||||
|
dtype: int64
|
||||||
|
"""
|
||||||
|
if x["is_leveled"]:
|
||||||
|
return int(x["score"])
|
||||||
|
|
||||||
|
if x["score"] > x["score_rate"]:
|
||||||
|
raise ValueError(
|
||||||
|
f"score is higher than score_rate ({x['score']} > {x['score_rate']}) for {x}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return int(ceil(x["score"] / x["score_rate"] * level_max))
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------
|
||||||
|
# Reglages pour 'vim'
|
||||||
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||||
|
# cursor: 16 del
|
141
recopytex/datalib/on_score_dataframe.py
Normal file
141
recopytex/datalib/on_score_dataframe.py
Normal file
@ -0,0 +1,141 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# encoding: utf-8
|
||||||
|
|
||||||
|
from .on_score_column import score_to_mark, score_to_level
|
||||||
|
|
||||||
|
|
||||||
|
def compute_marks(df, score_max, rounding=lambda x: round(x, 2)):
|
||||||
|
"""Compute the mark for the dataframe
|
||||||
|
|
||||||
|
apply score_to_mark to each row
|
||||||
|
|
||||||
|
:param df: DataFrame with "score", "is_leveled" and "score_rate" columns.
|
||||||
|
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
|
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
|
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
|
... "score":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
||||||
|
... }
|
||||||
|
>>> df = pd.DataFrame(d)
|
||||||
|
>>> df
|
||||||
|
Eleve score_rate is_leveled score
|
||||||
|
0 E1 1 0 1.000
|
||||||
|
1 E1 1 0 0.330
|
||||||
|
2 E1 2 0 2.000
|
||||||
|
3 E1 2 0 1.500
|
||||||
|
4 E1 2 1 1.000
|
||||||
|
5 E1 2 1 3.000
|
||||||
|
6 E2 1 0 0.666
|
||||||
|
7 E2 1 0 1.000
|
||||||
|
8 E2 2 0 1.500
|
||||||
|
9 E2 2 0 1.000
|
||||||
|
10 E2 2 1 2.000
|
||||||
|
11 E2 2 1 3.000
|
||||||
|
>>> compute_marks(df, 3)
|
||||||
|
0 1.00
|
||||||
|
1 0.33
|
||||||
|
2 2.00
|
||||||
|
3 1.50
|
||||||
|
4 0.67
|
||||||
|
5 2.00
|
||||||
|
6 0.67
|
||||||
|
7 1.00
|
||||||
|
8 1.50
|
||||||
|
9 1.00
|
||||||
|
10 1.33
|
||||||
|
11 2.00
|
||||||
|
dtype: float64
|
||||||
|
>>> from .on_value import round_half_point
|
||||||
|
>>> compute_marks(df, 3, round_half_point)
|
||||||
|
0 1.0
|
||||||
|
1 0.5
|
||||||
|
2 2.0
|
||||||
|
3 1.5
|
||||||
|
4 0.5
|
||||||
|
5 2.0
|
||||||
|
6 0.5
|
||||||
|
7 1.0
|
||||||
|
8 1.5
|
||||||
|
9 1.0
|
||||||
|
10 1.5
|
||||||
|
11 2.0
|
||||||
|
dtype: float64
|
||||||
|
"""
|
||||||
|
return df[["score", "is_leveled", "score_rate"]].apply(
|
||||||
|
lambda x: score_to_mark(x, score_max, rounding), axis=1
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_level(df, level_max=3):
|
||||||
|
"""Compute level for the dataframe
|
||||||
|
|
||||||
|
Applies score_to_level to each row
|
||||||
|
|
||||||
|
:param df: DataFrame with "score", "is_leveled" and "score_rate" columns.
|
||||||
|
:return: Columns with level
|
||||||
|
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
|
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
|
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
|
... "score":[0, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
||||||
|
... }
|
||||||
|
>>> df = pd.DataFrame(d)
|
||||||
|
>>> compute_level(df)
|
||||||
|
0 0
|
||||||
|
1 1
|
||||||
|
2 3
|
||||||
|
3 3
|
||||||
|
4 1
|
||||||
|
5 3
|
||||||
|
6 2
|
||||||
|
7 3
|
||||||
|
8 3
|
||||||
|
9 2
|
||||||
|
10 2
|
||||||
|
11 3
|
||||||
|
dtype: int64
|
||||||
|
"""
|
||||||
|
return df[["score", "is_leveled", "score_rate"]].apply(
|
||||||
|
lambda x: score_to_level(x, level_max), axis=1
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_normalized(df, rounding=lambda x: round(x, 2)):
|
||||||
|
"""Compute the normalized mark (Mark / score_rate)
|
||||||
|
|
||||||
|
:param df: DataFrame with "Mark" and "score_rate" columns
|
||||||
|
:return: column with normalized mark
|
||||||
|
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
|
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
|
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
|
... "score":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
||||||
|
... }
|
||||||
|
>>> df = pd.DataFrame(d)
|
||||||
|
>>> df["mark"] = compute_marks(df, 3)
|
||||||
|
>>> compute_normalized(df)
|
||||||
|
0 1.00
|
||||||
|
1 0.33
|
||||||
|
2 1.00
|
||||||
|
3 0.75
|
||||||
|
4 0.34
|
||||||
|
5 1.00
|
||||||
|
6 0.67
|
||||||
|
7 1.00
|
||||||
|
8 0.75
|
||||||
|
9 0.50
|
||||||
|
10 0.66
|
||||||
|
11 1.00
|
||||||
|
dtype: float64
|
||||||
|
"""
|
||||||
|
return rounding(df["mark"] / df["score_rate"])
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------
|
||||||
|
# Reglages pour 'vim'
|
||||||
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||||
|
# cursor: 16 del
|
40
recopytex/datalib/on_value.py
Normal file
40
recopytex/datalib/on_value.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# encoding: utf-8
|
||||||
|
|
||||||
|
from math import ceil, floor
|
||||||
|
|
||||||
|
|
||||||
|
def round_with_base(x, base=0.5):
|
||||||
|
"""Round to a multiple of base
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> round_with_base(1.33, 0.1)
|
||||||
|
1.3
|
||||||
|
>>> round_with_base(1.33, 0.2)
|
||||||
|
1.4
|
||||||
|
>>> round_with_base(1.33, 1)
|
||||||
|
1
|
||||||
|
>>> round_with_base(1.33, 2)
|
||||||
|
2
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
prec = len(str(base).split(".")[1])
|
||||||
|
except IndexError:
|
||||||
|
prec = 0
|
||||||
|
return round(base * round(float(x) / base), prec)
|
||||||
|
|
||||||
|
|
||||||
|
def round_half_point(x):
|
||||||
|
"""Round to nearest half point
|
||||||
|
|
||||||
|
:example:
|
||||||
|
>>> round_half_point(1.33)
|
||||||
|
1.5
|
||||||
|
>>> round_half_point(1.1)
|
||||||
|
1.0
|
||||||
|
>>> round_half_point(1.66)
|
||||||
|
1.5
|
||||||
|
>>> round_half_point(1.76)
|
||||||
|
2.0
|
||||||
|
"""
|
||||||
|
return round_with_base(x, base=0.5)
|
Loading…
Reference in New Issue
Block a user