Feat: filter none numeric scores
This commit is contained in:
parent
7e6b24aaea
commit
2e86b3a0a2
@ -10,7 +10,7 @@ def score_to_mark(x, score_max, rounding=lambda x: round(x, 2)):
|
|||||||
if the item is leveled then the score is multiply by the score_rate
|
if the item is leveled then the score is multiply by the score_rate
|
||||||
otherwise it copies the score
|
otherwise it copies the score
|
||||||
|
|
||||||
:param x: dictionnary with "is_leveled", "score" and "score_rate" keys
|
:param x: dictionnary with "is_leveled", "score" (need to be number) and "score_rate" keys
|
||||||
:param score_max:
|
:param score_max:
|
||||||
:param rounding: rounding mark function
|
:param rounding: rounding mark function
|
||||||
:return: the mark
|
:return: the mark
|
||||||
@ -125,6 +125,10 @@ def score_to_level(x, level_max=3):
|
|||||||
return int(ceil(x["score"] / x["score_rate"] * level_max))
|
return int(ceil(x["score"] / x["score_rate"] * level_max))
|
||||||
|
|
||||||
|
|
||||||
|
def score_to_numeric_score(x, score_config):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
# Reglages pour 'vim'
|
# Reglages pour 'vim'
|
||||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
# encoding: utf-8
|
# encoding: utf-8
|
||||||
|
|
||||||
from .on_score_column import score_to_mark, score_to_level
|
from .on_score_column import score_to_mark, score_to_level
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
def compute_marks(df, score_max, rounding=lambda x: round(x, 2)):
|
def compute_marks(df, score_max, rounding=lambda x: round(x, 2)):
|
||||||
@ -9,7 +10,7 @@ def compute_marks(df, score_max, rounding=lambda x: round(x, 2)):
|
|||||||
|
|
||||||
apply score_to_mark to each row
|
apply score_to_mark to each row
|
||||||
|
|
||||||
:param df: DataFrame with "score", "is_leveled" and "score_rate" columns.
|
:param df: DataFrame with "score" (need to be number), "is_leveled" and "score_rate" columns.
|
||||||
|
|
||||||
>>> import pandas as pd
|
>>> import pandas as pd
|
||||||
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
@ -113,12 +114,12 @@ def compute_normalized(df, rounding=lambda x: round(x, 2)):
|
|||||||
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
... "score":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
... "score":[0, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
||||||
... }
|
... }
|
||||||
>>> df = pd.DataFrame(d)
|
>>> df = pd.DataFrame(d)
|
||||||
>>> df["mark"] = compute_marks(df, 3)
|
>>> df["mark"] = compute_marks(df, 3)
|
||||||
>>> compute_normalized(df)
|
>>> compute_normalized(df)
|
||||||
0 1.00
|
0 0.00
|
||||||
1 0.33
|
1 0.33
|
||||||
2 1.00
|
2 1.00
|
||||||
3 0.75
|
3 0.75
|
||||||
@ -135,6 +136,60 @@ def compute_normalized(df, rounding=lambda x: round(x, 2)):
|
|||||||
return rounding(df["mark"] / df["score_rate"])
|
return rounding(df["mark"] / df["score_rate"])
|
||||||
|
|
||||||
|
|
||||||
|
def filter_none_score(df, score_config):
|
||||||
|
"""Filter rows where scores have None numeric values
|
||||||
|
|
||||||
|
:example:
|
||||||
|
|
||||||
|
>>> import pandas as pd
|
||||||
|
>>> d = {"Eleve":["E1"]*7,
|
||||||
|
... "score_rate": [1]*7,
|
||||||
|
... "is_leveled":[0]+[1]*6,
|
||||||
|
... "score":[0.33, "", ".", "a", 1, 2, 3],
|
||||||
|
... }
|
||||||
|
>>> score_config = {
|
||||||
|
... 'BAD': {'value': 0, 'numeric_value': 0},
|
||||||
|
... 'FEW': {'value': 1, 'numeric_value': 1},
|
||||||
|
... 'NEARLY': {'value': 2, 'numeric_value': 2},
|
||||||
|
... 'GOOD': {'value': 3, 'numeric_value': 3},
|
||||||
|
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
|
||||||
|
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
|
||||||
|
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
|
||||||
|
... }
|
||||||
|
>>> df = pd.DataFrame(d)
|
||||||
|
>>> filter_none_score(df, score_config)
|
||||||
|
Eleve score_rate is_leveled score
|
||||||
|
0 E1 1 0 0.33
|
||||||
|
2 E1 1 1 .
|
||||||
|
4 E1 1 1 1
|
||||||
|
5 E1 1 1 2
|
||||||
|
6 E1 1 1 3
|
||||||
|
"""
|
||||||
|
not_leveled_df = df[df["is_leveled"] != 1]
|
||||||
|
leveled_df = df[df["is_leveled"] == 1]
|
||||||
|
|
||||||
|
not_none_values = [
|
||||||
|
v["value"]
|
||||||
|
for v in score_config.values()
|
||||||
|
if str(v["numeric_value"]).lower() != "none"
|
||||||
|
]
|
||||||
|
filtered_leveled_df = leveled_df[leveled_df["score"].isin(not_none_values)]
|
||||||
|
|
||||||
|
return pd.concat([not_leveled_df, filtered_leveled_df])
|
||||||
|
|
||||||
|
|
||||||
|
def score_to_numeric_score(df, score_config):
|
||||||
|
"""Transform a score to the corresponding numeric value
|
||||||
|
|
||||||
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
|
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
|
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
|
... "score":[0, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
||||||
|
... }
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
# Reglages pour 'vim'
|
# Reglages pour 'vim'
|
||||||
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||||
|
Loading…
Reference in New Issue
Block a user