Feat: filter dans store scores

This commit is contained in:
Bertrand Benjamin 2021-02-23 17:40:18 +01:00
parent b5bf1ac137
commit 3dbfc85447

View File

@ -10,8 +10,10 @@ from datetime import date, datetime
import uuid import uuid
import pandas as pd import pandas as pd
import yaml import yaml
from pathlib import Path
from ...scripts.getconfig import config from ...scripts.getconfig import config
from ... import flat_df_students, pp_q_scores
from ...config import NO_ST_COLUMNS from ...config import NO_ST_COLUMNS
from ..app import app from ..app import app
from ...scripts.exam import Exam from ...scripts.exam import Exam
@ -117,9 +119,11 @@ layout = html.Div(
] ]
), ),
dcc.Store(id="student-scores"), dcc.Store(id="student-scores"),
html.P(id="test"),
] ]
) )
@app.callback( @app.callback(
[ [
dash.dependencies.Output("student", "options"), dash.dependencies.Output("student", "options"),
@ -138,15 +142,54 @@ def update_students_list(tribe):
value = students[0]["Nom"] value = students[0]["Nom"]
return options, value return options, value
# @app.callback(
# [ @app.callback(
# dash.dependencies.Output("student-scores", "data"), [
# ], dash.dependencies.Output("student-scores", "data"),
# [ ],
# dash.dependencies.Input("tribe", "value"), [
# dash.dependencies.Input("student", "value"), dash.dependencies.Input("tribe", "value"),
# dash.dependencies.Input("term", "value"), dash.dependencies.Input("student", "value"),
# ], dash.dependencies.Input("term", "value"),
# ) ],
# def update_student_scores(tribe, student, term): )
# return [] def update_student_scores(tribe, student, term):
tribe_config = [t for t in config["tribes"] if t["name"] == tribe][0]
p = Path(tribe_config["name"])
csvs = list(p.glob("*.csv"))
dfs = []
for csv in csvs:
try:
scores = pd.read_csv(csv)
except pd.errors.ParserError:
pass
else:
try:
if scores.iloc[0]["Commentaire"] == "commentaire":
scores.drop([0], inplace=True)
except KeyError:
pass
scores = flat_df_students(scores).dropna(subset=["Score"])
scores = scores[scores["Eleve"] == student]
scores = scores[scores["Trimestre"] == term]
dfs.append(scores)
df = pd.concat(dfs)
return [df.to_dict("records")]
@app.callback(
[
dash.dependencies.Output("test", "children"),
],
[
dash.dependencies.Input("student-scores", "data"),
],
)
def update_test(data):
return [str(data)]