Feat: format_score
This commit is contained in:
parent
97b97af2de
commit
876f583d51
@ -43,6 +43,57 @@ def is_none_score(x, score_config):
|
||||
return x["score"] in none_values or pd.isnull(x["score"])
|
||||
|
||||
|
||||
def format_score(x, score_config):
|
||||
"""Make sure that score have the appropriate format
|
||||
|
||||
>>> import pandas as pd
|
||||
>>> d = {"Eleve":["E1"]*6,
|
||||
... "score_rate": [1]*6,
|
||||
... "is_leveled":[0]+[1]*5,
|
||||
... "score":[0.33, ".", "a", 1, 2, 3],
|
||||
... }
|
||||
>>> score_config = {
|
||||
... 'BAD': {'value': 0, 'numeric_value': 0},
|
||||
... 'FEW': {'value': 1, 'numeric_value': 1},
|
||||
... 'NEARLY': {'value': 2, 'numeric_value': 2},
|
||||
... 'GOOD': {'value': 3, 'numeric_value': 3},
|
||||
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
|
||||
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
|
||||
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
|
||||
... }
|
||||
>>> df = pd.DataFrame(d)
|
||||
>>> df.apply(lambda x:format_score(x, score_config), axis=1)
|
||||
0 0.33
|
||||
1 .
|
||||
2 a
|
||||
3 1
|
||||
4 2
|
||||
5 3
|
||||
dtype: object
|
||||
>>> format_score({"score": "1.0", "is_leveled": 1}, score_config)
|
||||
1
|
||||
>>> format_score({"score": "3.0", "is_leveled": 1}, score_config)
|
||||
3
|
||||
>>> format_score({"score": 4, "is_leveled": 1}, score_config)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: 4 (<class 'int'>) can't be a score
|
||||
|
||||
"""
|
||||
if not x["is_leveled"]:
|
||||
return float(x["score"])
|
||||
|
||||
try:
|
||||
score = int(float(x["score"]))
|
||||
except ValueError:
|
||||
score = str(x["score"])
|
||||
|
||||
if score in [v["value"] for v in score_config.values()]:
|
||||
return score
|
||||
|
||||
raise ValueError(f"{x['score']} ({type(x['score'])}) can't be a score")
|
||||
|
||||
|
||||
def score_to_numeric_score(x, score_config):
|
||||
"""Convert a score to the corresponding numeric value
|
||||
|
||||
@ -81,7 +132,7 @@ def score_to_numeric_score(x, score_config):
|
||||
|
||||
|
||||
def score_to_mark(x, score_max, rounding=lambda x: round(x, 2)):
|
||||
"""Compute the mark from the score
|
||||
"""Compute the mark from "score" which have to be filtered and in numeric form
|
||||
|
||||
if the item is leveled then the score is multiply by the score_rate
|
||||
otherwise it copies the score
|
||||
@ -92,39 +143,38 @@ def score_to_mark(x, score_max, rounding=lambda x: round(x, 2)):
|
||||
:return: the mark
|
||||
|
||||
>>> import pandas as pd
|
||||
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||
... "score":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1.2, 2, 3],
|
||||
>>> d = {"Eleve":["E1"]*7,
|
||||
... "score_rate": [1]*7,
|
||||
... "is_leveled":[0]+[1]*6,
|
||||
... "score":[0.33, "", ".", "a", 1, 2, 3],
|
||||
... }
|
||||
>>> score_config = {
|
||||
... 'BAD': {'value': 0, 'numeric_value': 0},
|
||||
... 'FEW': {'value': 1, 'numeric_value': 1},
|
||||
... 'NEARLY': {'value': 2, 'numeric_value': 2},
|
||||
... 'GOOD': {'value': 3, 'numeric_value': 3},
|
||||
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
|
||||
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
|
||||
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
|
||||
... }
|
||||
>>> df = pd.DataFrame(d)
|
||||
>>> df.loc[0]
|
||||
Eleve E1
|
||||
score_rate 1
|
||||
is_leveled 0
|
||||
score 1.0
|
||||
Name: 0, dtype: object
|
||||
>>> score_to_mark(df.loc[0], 3)
|
||||
1.0
|
||||
>>> df.loc[10]
|
||||
Eleve E2
|
||||
score_rate 2
|
||||
is_leveled 1
|
||||
score 2.0
|
||||
Name: 10, dtype: object
|
||||
>>> score_to_mark(df.loc[10], 3)
|
||||
1.33
|
||||
>>> df = df[~df.apply(lambda x:is_none_score(x, score_config), axis=1)]
|
||||
>>> df["score"] = df.apply(lambda x:score_to_numeric_score(x, score_config), axis=1)
|
||||
>>> df.apply(lambda x:score_to_mark(x, 3), axis=1)
|
||||
0 0.33
|
||||
2 0.00
|
||||
4 0.33
|
||||
5 0.67
|
||||
6 1.00
|
||||
dtype: float64
|
||||
>>> from .on_value import round_half_point
|
||||
>>> score_to_mark(df.loc[10], 3, round_half_point)
|
||||
1.5
|
||||
>>> df.loc[1]
|
||||
Eleve E1
|
||||
score_rate 1
|
||||
is_leveled 0
|
||||
score 0.33
|
||||
Name: 1, dtype: object
|
||||
>>> score_to_mark(df.loc[1], 3)
|
||||
0.33
|
||||
>>> df.apply(lambda x:score_to_mark(x, 3, round_half_point), axis=1)
|
||||
0 0.5
|
||||
2 0.0
|
||||
4 0.5
|
||||
5 0.5
|
||||
6 1.0
|
||||
dtype: float64
|
||||
"""
|
||||
if x["is_leveled"]:
|
||||
if x["score"] not in list(range(score_max + 1)):
|
||||
|
Loading…
Reference in New Issue
Block a user