Feat: format_score

This commit is contained in:
Bertrand Benjamin 2021-04-22 07:49:51 +02:00
parent 97b97af2de
commit 876f583d51

View File

@ -43,6 +43,57 @@ def is_none_score(x, score_config):
return x["score"] in none_values or pd.isnull(x["score"])
def format_score(x, score_config):
"""Make sure that score have the appropriate format
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*6,
... "score_rate": [1]*6,
... "is_leveled":[0]+[1]*5,
... "score":[0.33, ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> df.apply(lambda x:format_score(x, score_config), axis=1)
0 0.33
1 .
2 a
3 1
4 2
5 3
dtype: object
>>> format_score({"score": "1.0", "is_leveled": 1}, score_config)
1
>>> format_score({"score": "3.0", "is_leveled": 1}, score_config)
3
>>> format_score({"score": 4, "is_leveled": 1}, score_config)
Traceback (most recent call last):
...
ValueError: 4 (<class 'int'>) can't be a score
"""
if not x["is_leveled"]:
return float(x["score"])
try:
score = int(float(x["score"]))
except ValueError:
score = str(x["score"])
if score in [v["value"] for v in score_config.values()]:
return score
raise ValueError(f"{x['score']} ({type(x['score'])}) can't be a score")
def score_to_numeric_score(x, score_config):
"""Convert a score to the corresponding numeric value
@ -81,7 +132,7 @@ def score_to_numeric_score(x, score_config):
def score_to_mark(x, score_max, rounding=lambda x: round(x, 2)):
"""Compute the mark from the score
"""Compute the mark from "score" which have to be filtered and in numeric form
if the item is leveled then the score is multiply by the score_rate
otherwise it copies the score
@ -92,39 +143,38 @@ def score_to_mark(x, score_max, rounding=lambda x: round(x, 2)):
:return: the mark
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
... "score":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1.2, 2, 3],
>>> d = {"Eleve":["E1"]*7,
... "score_rate": [1]*7,
... "is_leveled":[0]+[1]*6,
... "score":[0.33, "", ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> df.loc[0]
Eleve E1
score_rate 1
is_leveled 0
score 1.0
Name: 0, dtype: object
>>> score_to_mark(df.loc[0], 3)
1.0
>>> df.loc[10]
Eleve E2
score_rate 2
is_leveled 1
score 2.0
Name: 10, dtype: object
>>> score_to_mark(df.loc[10], 3)
1.33
>>> df = df[~df.apply(lambda x:is_none_score(x, score_config), axis=1)]
>>> df["score"] = df.apply(lambda x:score_to_numeric_score(x, score_config), axis=1)
>>> df.apply(lambda x:score_to_mark(x, 3), axis=1)
0 0.33
2 0.00
4 0.33
5 0.67
6 1.00
dtype: float64
>>> from .on_value import round_half_point
>>> score_to_mark(df.loc[10], 3, round_half_point)
1.5
>>> df.loc[1]
Eleve E1
score_rate 1
is_leveled 0
score 0.33
Name: 1, dtype: object
>>> score_to_mark(df.loc[1], 3)
0.33
>>> df.apply(lambda x:score_to_mark(x, 3, round_half_point), axis=1)
0 0.5
2 0.0
4 0.5
5 0.5
6 1.0
dtype: float64
"""
if x["is_leveled"]:
if x["score"] not in list(range(score_max + 1)):