Feat: delete functions on dataframe and move it to functions on rows

This commit is contained in:
Bertrand Benjamin 2021-04-19 21:54:44 +02:00
parent 2e86b3a0a2
commit 8ec24a24b3
2 changed files with 75 additions and 200 deletions

View File

@ -4,6 +4,81 @@
from math import ceil
def is_none_score(x, score_config):
"""Is a score correspond to a None numeric_value which
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*7,
... "score_rate": [1]*7,
... "is_leveled":[0]+[1]*6,
... "score":[0.33, "", ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> df.apply(lambda x:is_none_score(x, score_config), axis=1)
0 False
1 True
2 False
3 True
4 False
5 False
6 False
dtype: bool
"""
none_values = [
v["value"]
for v in score_config.values()
if str(v["numeric_value"]).lower() == "none"
]
return x["score"] in none_values
def score_to_numeric_score(x, score_config):
"""Convert a score to the corresponding numeric value
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*7,
... "score_rate": [1]*7,
... "is_leveled":[0]+[1]*6,
... "score":[0.33, "", ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> df.apply(lambda x:score_to_numeric_score(x, score_config), axis=1)
0 0.33
1 None
2 0
3 None
4 1
5 2
6 3
dtype: object
"""
if x["is_leveled"]:
replacements = {v["value"]: v["numeric_value"] for v in score_config.values()}
return replacements[x["score"]]
return x["score"]
def score_to_mark(x, score_max, rounding=lambda x: round(x, 2)):
"""Compute the mark from the score
@ -125,10 +200,6 @@ def score_to_level(x, level_max=3):
return int(ceil(x["score"] / x["score_rate"] * level_max))
def score_to_numeric_score(x, score_config):
pass
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:

View File

@ -1,196 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
from .on_score_column import score_to_mark, score_to_level
import pandas as pd
def compute_marks(df, score_max, rounding=lambda x: round(x, 2)):
"""Compute the mark for the dataframe
apply score_to_mark to each row
:param df: DataFrame with "score" (need to be number), "is_leveled" and "score_rate" columns.
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
... "score":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> df
Eleve score_rate is_leveled score
0 E1 1 0 1.000
1 E1 1 0 0.330
2 E1 2 0 2.000
3 E1 2 0 1.500
4 E1 2 1 1.000
5 E1 2 1 3.000
6 E2 1 0 0.666
7 E2 1 0 1.000
8 E2 2 0 1.500
9 E2 2 0 1.000
10 E2 2 1 2.000
11 E2 2 1 3.000
>>> compute_marks(df, 3)
0 1.00
1 0.33
2 2.00
3 1.50
4 0.67
5 2.00
6 0.67
7 1.00
8 1.50
9 1.00
10 1.33
11 2.00
dtype: float64
>>> from .on_value import round_half_point
>>> compute_marks(df, 3, round_half_point)
0 1.0
1 0.5
2 2.0
3 1.5
4 0.5
5 2.0
6 0.5
7 1.0
8 1.5
9 1.0
10 1.5
11 2.0
dtype: float64
"""
return df[["score", "is_leveled", "score_rate"]].apply(
lambda x: score_to_mark(x, score_max, rounding), axis=1
)
def compute_level(df, level_max=3):
"""Compute level for the dataframe
Applies score_to_level to each row
:param df: DataFrame with "score", "is_leveled" and "score_rate" columns.
:return: Columns with level
>>> import pandas as pd
>>> import numpy as np
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
... "score":[0, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> compute_level(df)
0 0
1 1
2 3
3 3
4 1
5 3
6 2
7 3
8 3
9 2
10 2
11 3
dtype: int64
"""
return df[["score", "is_leveled", "score_rate"]].apply(
lambda x: score_to_level(x, level_max), axis=1
)
def compute_normalized(df, rounding=lambda x: round(x, 2)):
"""Compute the normalized mark (Mark / score_rate)
:param df: DataFrame with "Mark" and "score_rate" columns
:return: column with normalized mark
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
... "score":[0, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> df["mark"] = compute_marks(df, 3)
>>> compute_normalized(df)
0 0.00
1 0.33
2 1.00
3 0.75
4 0.34
5 1.00
6 0.67
7 1.00
8 0.75
9 0.50
10 0.66
11 1.00
dtype: float64
"""
return rounding(df["mark"] / df["score_rate"])
def filter_none_score(df, score_config):
"""Filter rows where scores have None numeric values
:example:
>>> import pandas as pd
>>> d = {"Eleve":["E1"]*7,
... "score_rate": [1]*7,
... "is_leveled":[0]+[1]*6,
... "score":[0.33, "", ".", "a", 1, 2, 3],
... }
>>> score_config = {
... 'BAD': {'value': 0, 'numeric_value': 0},
... 'FEW': {'value': 1, 'numeric_value': 1},
... 'NEARLY': {'value': 2, 'numeric_value': 2},
... 'GOOD': {'value': 3, 'numeric_value': 3},
... 'NOTFILLED': {'value': '', 'numeric_value': 'None'},
... 'NOANSWER': {'value': '.', 'numeric_value': 0},
... 'ABS': {'value': 'a', 'numeric_value': 'None'}
... }
>>> df = pd.DataFrame(d)
>>> filter_none_score(df, score_config)
Eleve score_rate is_leveled score
0 E1 1 0 0.33
2 E1 1 1 .
4 E1 1 1 1
5 E1 1 1 2
6 E1 1 1 3
"""
not_leveled_df = df[df["is_leveled"] != 1]
leveled_df = df[df["is_leveled"] == 1]
not_none_values = [
v["value"]
for v in score_config.values()
if str(v["numeric_value"]).lower() != "none"
]
filtered_leveled_df = leveled_df[leveled_df["score"].isin(not_none_values)]
return pd.concat([not_leveled_df, filtered_leveled_df])
def score_to_numeric_score(df, score_config):
"""Transform a score to the corresponding numeric value
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "score_rate":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "is_leveled":[0]*4+[1]*2 + [0]*4+[1]*2,
... "score":[0, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
"""
pass
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del