Compare commits
No commits in common. "0a5a931d01256a8fa48152d64b193937dc1f8062" and "894ebc4ec8884e8f49f9fb651d20ca12caff96dd" have entirely different histories.
0a5a931d01
...
894ebc4ec8
@ -1,341 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# encoding: utf-8
|
|
||||||
|
|
||||||
import dash
|
|
||||||
import dash_html_components as html
|
|
||||||
import dash_core_components as dcc
|
|
||||||
import dash_table
|
|
||||||
from dash.exceptions import PreventUpdate
|
|
||||||
import plotly.graph_objects as go
|
|
||||||
from pathlib import Path
|
|
||||||
from datetime import datetime
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
import dash_bootstrap_components as dbc
|
|
||||||
|
|
||||||
|
|
||||||
from .. import flat_df_students, pp_q_scores
|
|
||||||
from ..config import NO_ST_COLUMNS
|
|
||||||
from ..scripts.getconfig import config, CONFIGPATH
|
|
||||||
|
|
||||||
COLORS = {
|
|
||||||
".": "black",
|
|
||||||
0: "#E7472B",
|
|
||||||
1: "#FF712B",
|
|
||||||
2: "#F2EC4C",
|
|
||||||
3: "#68D42F",
|
|
||||||
}
|
|
||||||
|
|
||||||
app = dash.Dash(external_stylesheets=[dbc.themes.SIMPLEX])
|
|
||||||
# external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"]
|
|
||||||
# app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
|
|
||||||
# app = dash.Dash(__name__)
|
|
||||||
|
|
||||||
app.layout = html.Div(
|
|
||||||
children=[
|
|
||||||
dbc.NavbarSimple(
|
|
||||||
children=[
|
|
||||||
dbc.Alert("Dernière sauvegarde", id="lastsave", color="success"),
|
|
||||||
],
|
|
||||||
brand="Analyse des notes",
|
|
||||||
brand_href="#",
|
|
||||||
color="success",
|
|
||||||
dark=True,
|
|
||||||
),
|
|
||||||
html.Br(),
|
|
||||||
dbc.Row(
|
|
||||||
[
|
|
||||||
dbc.Col(
|
|
||||||
[
|
|
||||||
"Classe: ",
|
|
||||||
dbc.Select(
|
|
||||||
id="tribe",
|
|
||||||
options=[
|
|
||||||
{"label": t["name"], "value": t["name"]}
|
|
||||||
for t in config["tribes"]
|
|
||||||
],
|
|
||||||
value=config["tribes"][0]["name"],
|
|
||||||
),
|
|
||||||
]
|
|
||||||
),
|
|
||||||
dbc.Col(
|
|
||||||
[
|
|
||||||
"Evaluation: ",
|
|
||||||
dbc.Select(id="csv"),
|
|
||||||
]
|
|
||||||
),
|
|
||||||
],
|
|
||||||
),
|
|
||||||
html.Br(),
|
|
||||||
dbc.Row(
|
|
||||||
[
|
|
||||||
dbc.Col(
|
|
||||||
dash_table.DataTable(
|
|
||||||
id="final_score_table",
|
|
||||||
columns=[
|
|
||||||
{"id": "Élève", "name": "Élève"},
|
|
||||||
{"id": "Note", "name": "Note"},
|
|
||||||
{"id": "Barème", "name": "Bareme"},
|
|
||||||
],
|
|
||||||
data=[],
|
|
||||||
style_data_conditional=[
|
|
||||||
{
|
|
||||||
"if": {"row_index": "odd"},
|
|
||||||
"backgroundColor": "rgb(248, 248, 248)",
|
|
||||||
}
|
|
||||||
],
|
|
||||||
style_header={
|
|
||||||
"backgroundColor": "rgb(230, 230, 230)",
|
|
||||||
"fontWeight": "bold",
|
|
||||||
},
|
|
||||||
style_data={
|
|
||||||
"width": "100px",
|
|
||||||
"maxWidth": "100px",
|
|
||||||
"minWidth": "100px",
|
|
||||||
},
|
|
||||||
)
|
|
||||||
),
|
|
||||||
dbc.Col(
|
|
||||||
[
|
|
||||||
dash_table.DataTable(
|
|
||||||
id="final_score_describe",
|
|
||||||
),
|
|
||||||
dcc.Graph(
|
|
||||||
id="fig_assessment_hist",
|
|
||||||
),
|
|
||||||
# dcc.Graph(id="fig_competences"),
|
|
||||||
]
|
|
||||||
),
|
|
||||||
],
|
|
||||||
),
|
|
||||||
html.Br(),
|
|
||||||
html.Div(
|
|
||||||
[
|
|
||||||
dash_table.DataTable(
|
|
||||||
id="scores_table",
|
|
||||||
columns=[{"id": c, "name": c} for c in NO_ST_COLUMNS.values()],
|
|
||||||
style_cell={
|
|
||||||
"whiteSpace": "normal",
|
|
||||||
"height": "auto",
|
|
||||||
},
|
|
||||||
style_data_conditional=[],
|
|
||||||
editable=True,
|
|
||||||
),
|
|
||||||
dbc.Button("Ajouter un élément", id="btn_add_element"),
|
|
||||||
]
|
|
||||||
),
|
|
||||||
dcc.Store(id="final_score"),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@app.callback(
|
|
||||||
[
|
|
||||||
dash.dependencies.Output("csv", "options"),
|
|
||||||
dash.dependencies.Output("csv", "value"),
|
|
||||||
],
|
|
||||||
[dash.dependencies.Input("tribe", "value")],
|
|
||||||
)
|
|
||||||
def update_csvs(value):
|
|
||||||
if not value:
|
|
||||||
raise PreventUpdate
|
|
||||||
p = Path(value)
|
|
||||||
csvs = list(p.glob("*.csv"))
|
|
||||||
try:
|
|
||||||
return [{"label": str(c), "value": str(c)} for c in csvs], str(csvs[0])
|
|
||||||
except IndexError:
|
|
||||||
return []
|
|
||||||
|
|
||||||
|
|
||||||
@app.callback(
|
|
||||||
[
|
|
||||||
dash.dependencies.Output("final_score", "data"),
|
|
||||||
],
|
|
||||||
[dash.dependencies.Input("scores_table", "data")],
|
|
||||||
)
|
|
||||||
def update_final_scores(data):
|
|
||||||
if not data:
|
|
||||||
raise PreventUpdate
|
|
||||||
try:
|
|
||||||
scores = pd.DataFrame.from_records(data)
|
|
||||||
scores = flat_df_students(scores).dropna(subset=["Score"])
|
|
||||||
scores = pp_q_scores(scores)
|
|
||||||
assessment_scores = scores.groupby(["Eleve"]).agg(
|
|
||||||
{"Note": "sum", "Bareme": "sum"}
|
|
||||||
)
|
|
||||||
return [assessment_scores.reset_index().to_dict("records")]
|
|
||||||
except KeyError:
|
|
||||||
raise PreventUpdate
|
|
||||||
|
|
||||||
|
|
||||||
@app.callback(
|
|
||||||
[
|
|
||||||
dash.dependencies.Output("final_score_table", "columns"),
|
|
||||||
dash.dependencies.Output("final_score_table", "data"),
|
|
||||||
],
|
|
||||||
[dash.dependencies.Input("final_score", "data")],
|
|
||||||
)
|
|
||||||
def update_final_scores_table(data):
|
|
||||||
assessment_scores = pd.DataFrame.from_records(data)
|
|
||||||
return [
|
|
||||||
{"id": c, "name": c} for c in assessment_scores.columns
|
|
||||||
], assessment_scores.to_dict("records")
|
|
||||||
|
|
||||||
|
|
||||||
@app.callback(
|
|
||||||
[
|
|
||||||
dash.dependencies.Output("final_score_describe", "columns"),
|
|
||||||
dash.dependencies.Output("final_score_describe", "data"),
|
|
||||||
],
|
|
||||||
[dash.dependencies.Input("final_score", "data")],
|
|
||||||
)
|
|
||||||
def update_final_scores_descr(data):
|
|
||||||
desc = pd.DataFrame.from_records(data)["Note"].describe()
|
|
||||||
return [{"id": c, "name": c} for c in desc.keys()], [desc.to_dict()]
|
|
||||||
|
|
||||||
|
|
||||||
@app.callback(
|
|
||||||
[
|
|
||||||
dash.dependencies.Output("fig_assessment_hist", "figure"),
|
|
||||||
],
|
|
||||||
[dash.dependencies.Input("final_score", "data")],
|
|
||||||
)
|
|
||||||
def update_final_scores_hist(data):
|
|
||||||
assessment_scores = pd.DataFrame.from_records(data)
|
|
||||||
|
|
||||||
ranges = np.linspace(
|
|
||||||
0, assessment_scores.Bareme.max(), int(assessment_scores.Bareme.max() * 2 + 1)
|
|
||||||
)
|
|
||||||
bins = pd.cut(assessment_scores["Note"], ranges)
|
|
||||||
assessment_scores["Bin"] = bins
|
|
||||||
assessment_grouped = (
|
|
||||||
assessment_scores.reset_index()
|
|
||||||
.groupby("Bin")
|
|
||||||
.agg({"Bareme": "count", "Eleve": lambda x: "\n".join(x)})
|
|
||||||
)
|
|
||||||
assessment_grouped.index = assessment_grouped.index.map(lambda i: i.right)
|
|
||||||
fig = go.Figure()
|
|
||||||
fig.add_bar(
|
|
||||||
x=assessment_grouped.index,
|
|
||||||
y=assessment_grouped.Bareme,
|
|
||||||
text=assessment_grouped.Eleve,
|
|
||||||
textposition="auto",
|
|
||||||
hovertemplate="",
|
|
||||||
marker_color="#4E89DE",
|
|
||||||
)
|
|
||||||
fig.update_layout(
|
|
||||||
height=300,
|
|
||||||
margin=dict(l=5, r=5, b=5, t=5),
|
|
||||||
)
|
|
||||||
return [fig]
|
|
||||||
|
|
||||||
|
|
||||||
# @app.callback(
|
|
||||||
# [
|
|
||||||
# dash.dependencies.Output("fig_competences", "figure"),
|
|
||||||
# ],
|
|
||||||
# [dash.dependencies.Input("scores_table", "data")],
|
|
||||||
# )
|
|
||||||
# def update_competence_fig(data):
|
|
||||||
# scores = pd.DataFrame.from_records(data)
|
|
||||||
# scores = flat_df_students(scores).dropna(subset=["Score"])
|
|
||||||
# scores = pp_q_scores(scores)
|
|
||||||
# pt = pd.pivot_table(
|
|
||||||
# scores,
|
|
||||||
# index=["Exercice", "Question", "Commentaire"],
|
|
||||||
# columns="Score",
|
|
||||||
# aggfunc="size",
|
|
||||||
# fill_value=0,
|
|
||||||
# )
|
|
||||||
# for i in {i for i in pt.index.get_level_values(0)}:
|
|
||||||
# pt.loc[(str(i), "", ""), :] = ""
|
|
||||||
# pt.sort_index(inplace=True)
|
|
||||||
# index = (
|
|
||||||
# pt.index.get_level_values(0)
|
|
||||||
# + ":"
|
|
||||||
# + pt.index.get_level_values(1)
|
|
||||||
# + " "
|
|
||||||
# + pt.index.get_level_values(2)
|
|
||||||
# )
|
|
||||||
#
|
|
||||||
# fig = go.Figure()
|
|
||||||
# bars = [
|
|
||||||
# {"score": -1, "name": "Pas de réponse", "color": COLORS["."]},
|
|
||||||
# {"score": 0, "name": "Faut", "color": COLORS[0]},
|
|
||||||
# {"score": 1, "name": "Peu juste", "color": COLORS[1]},
|
|
||||||
# {"score": 2, "name": "Presque juste", "color": COLORS[2]},
|
|
||||||
# {"score": 3, "name": "Juste", "color": COLORS[3]},
|
|
||||||
# ]
|
|
||||||
# for b in bars:
|
|
||||||
# try:
|
|
||||||
# fig.add_bar(
|
|
||||||
# x=index, y=pt[b["score"]], name=b["name"], marker_color=b["color"]
|
|
||||||
# )
|
|
||||||
# except KeyError:
|
|
||||||
# pass
|
|
||||||
# fig.update_layout(barmode="relative")
|
|
||||||
# return [fig]
|
|
||||||
|
|
||||||
|
|
||||||
@app.callback(
|
|
||||||
[
|
|
||||||
dash.dependencies.Output("lastsave", "children"),
|
|
||||||
dash.dependencies.Output("lastsave", "color"),
|
|
||||||
],
|
|
||||||
[
|
|
||||||
dash.dependencies.Input("scores_table", "data"),
|
|
||||||
dash.dependencies.State("csv", "value"),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
def save_scores(data, csv):
|
|
||||||
try:
|
|
||||||
scores = pd.DataFrame.from_records(data)
|
|
||||||
scores.to_csv(csv, index=False)
|
|
||||||
except:
|
|
||||||
return [f"Soucis pour sauvegarder à {datetime.today()} dans {csv}"], "warning"
|
|
||||||
else:
|
|
||||||
return [f"Dernière sauvegarde {datetime.today()} dans {csv}"], "success"
|
|
||||||
|
|
||||||
|
|
||||||
def highlight_value(df):
|
|
||||||
""" Cells style """
|
|
||||||
hight = []
|
|
||||||
for v, color in COLORS.items():
|
|
||||||
hight += [
|
|
||||||
{
|
|
||||||
"if": {"filter_query": "{{{}}} = {}".format(col, v), "column_id": col},
|
|
||||||
"backgroundColor": color,
|
|
||||||
"color": "white",
|
|
||||||
}
|
|
||||||
for col in df.columns
|
|
||||||
if col not in NO_ST_COLUMNS.values()
|
|
||||||
]
|
|
||||||
return hight
|
|
||||||
|
|
||||||
|
|
||||||
@app.callback(
|
|
||||||
[
|
|
||||||
dash.dependencies.Output("scores_table", "columns"),
|
|
||||||
dash.dependencies.Output("scores_table", "data"),
|
|
||||||
dash.dependencies.Output("scores_table", "style_data_conditional"),
|
|
||||||
],
|
|
||||||
[
|
|
||||||
dash.dependencies.Input("csv", "value"),
|
|
||||||
dash.dependencies.Input("btn_add_element", "n_clicks"),
|
|
||||||
dash.dependencies.State("scores_table", "data"),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
def update_scores_table(csv, add_element, data):
|
|
||||||
ctx = dash.callback_context
|
|
||||||
if ctx.triggered[0]['prop_id'] == "csv.value":
|
|
||||||
stack = pd.read_csv(csv, encoding="UTF8")
|
|
||||||
elif ctx.triggered[0]['prop_id'] == "btn_add_element.n_clicks":
|
|
||||||
stack = pd.DataFrame.from_records(data)
|
|
||||||
infos = pd.DataFrame.from_records([{k: stack.iloc[-1][k] for k in NO_ST_COLUMNS.values()}])
|
|
||||||
stack = stack.append(infos)
|
|
||||||
return (
|
|
||||||
[{"id": c, "name": c} for c in stack.columns],
|
|
||||||
stack.to_dict("records"),
|
|
||||||
highlight_value(stack),
|
|
||||||
)
|
|
||||||
|
|
299
recopytex/scripts/exam_dash.py
Normal file
299
recopytex/scripts/exam_dash.py
Normal file
@ -0,0 +1,299 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# encoding: utf-8
|
||||||
|
|
||||||
|
import dash
|
||||||
|
import dash_html_components as html
|
||||||
|
import dash_core_components as dcc
|
||||||
|
import dash_table
|
||||||
|
from dash.exceptions import PreventUpdate
|
||||||
|
import plotly.graph_objects as go
|
||||||
|
from pathlib import Path
|
||||||
|
from datetime import datetime
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
from .. import flat_df_students, pp_q_scores
|
||||||
|
from ..config import NO_ST_COLUMNS
|
||||||
|
from .getconfig import config, CONFIGPATH
|
||||||
|
|
||||||
|
COLORS = {
|
||||||
|
".": "black",
|
||||||
|
0: "#E7472B",
|
||||||
|
1: "#FF712B",
|
||||||
|
2: "#F2EC4C",
|
||||||
|
3: "#68D42F",
|
||||||
|
}
|
||||||
|
|
||||||
|
external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"]
|
||||||
|
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
|
||||||
|
# app = dash.Dash(__name__)
|
||||||
|
|
||||||
|
app.layout = html.Div(
|
||||||
|
children=[
|
||||||
|
html.H1("Analyse des notes"),
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
"Classe: ",
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="tribe",
|
||||||
|
options=[
|
||||||
|
{"label": t["name"], "value": t["name"]}
|
||||||
|
for t in config["tribes"]
|
||||||
|
],
|
||||||
|
value=config["tribes"][0]["name"],
|
||||||
|
),
|
||||||
|
"Evaluation: ",
|
||||||
|
dcc.Dropdown(id="csv"),
|
||||||
|
],
|
||||||
|
style={"columnCount": 2},
|
||||||
|
),
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
dash_table.DataTable(
|
||||||
|
id="final_score_table",
|
||||||
|
columns=[
|
||||||
|
{"id": "Élève", "name": "Élève"},
|
||||||
|
{"id": "Note", "name": "Note"},
|
||||||
|
{"id": "Barème", "name": "Bareme"},
|
||||||
|
],
|
||||||
|
data=[],
|
||||||
|
style_data_conditional=[
|
||||||
|
{
|
||||||
|
"if": {"row_index": "odd"},
|
||||||
|
"backgroundColor": "rgb(248, 248, 248)",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
style_header={
|
||||||
|
"backgroundColor": "rgb(230, 230, 230)",
|
||||||
|
"fontWeight": "bold",
|
||||||
|
},
|
||||||
|
style_data={
|
||||||
|
"width": "100px",
|
||||||
|
"maxWidth": "100px",
|
||||||
|
"minWidth": "100px",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
dash_table.DataTable(
|
||||||
|
id="final_score_describe",
|
||||||
|
),
|
||||||
|
dcc.Graph(id="fig_assessment_hist"),
|
||||||
|
dcc.Graph(id="fig_competences"),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
],
|
||||||
|
style={"columnCount": 2},
|
||||||
|
),
|
||||||
|
html.Br(),
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
dash_table.DataTable(
|
||||||
|
id="scores_table",
|
||||||
|
columns=[{"id": c, "name": c} for c in NO_ST_COLUMNS.values()],
|
||||||
|
style_cell={
|
||||||
|
"whiteSpace": "normal",
|
||||||
|
"height": "auto",
|
||||||
|
},
|
||||||
|
style_data_conditional=[],
|
||||||
|
editable=True,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
),
|
||||||
|
html.P(id="lastsave"),
|
||||||
|
dcc.Store(id="final_score"),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.callback(
|
||||||
|
[
|
||||||
|
dash.dependencies.Output("csv", "options"),
|
||||||
|
dash.dependencies.Output("csv", "value"),
|
||||||
|
],
|
||||||
|
[dash.dependencies.Input("tribe", "value")],
|
||||||
|
)
|
||||||
|
def update_csvs(value):
|
||||||
|
if not value:
|
||||||
|
raise PreventUpdate
|
||||||
|
p = Path(value)
|
||||||
|
csvs = list(p.glob("*.csv"))
|
||||||
|
try:
|
||||||
|
return [{"label": str(c), "value": str(c)} for c in csvs], str(csvs[0])
|
||||||
|
except IndexError:
|
||||||
|
return []
|
||||||
|
|
||||||
|
|
||||||
|
@app.callback(
|
||||||
|
[
|
||||||
|
dash.dependencies.Output("final_score", "data"),
|
||||||
|
],
|
||||||
|
[dash.dependencies.Input("scores_table", "data")],
|
||||||
|
)
|
||||||
|
def update_final_scores(data):
|
||||||
|
if not data:
|
||||||
|
raise PreventUpdate
|
||||||
|
try:
|
||||||
|
scores = pd.DataFrame.from_records(data)
|
||||||
|
scores = flat_df_students(scores).dropna(subset=["Score"])
|
||||||
|
scores = pp_q_scores(scores)
|
||||||
|
assessment_scores = scores.groupby(["Eleve"]).agg(
|
||||||
|
{"Note": "sum", "Bareme": "sum"}
|
||||||
|
)
|
||||||
|
return [assessment_scores.reset_index().to_dict("records")]
|
||||||
|
except KeyError:
|
||||||
|
raise PreventUpdate
|
||||||
|
|
||||||
|
|
||||||
|
@app.callback(
|
||||||
|
[
|
||||||
|
dash.dependencies.Output("final_score_table", "columns"),
|
||||||
|
dash.dependencies.Output("final_score_table", "data"),
|
||||||
|
],
|
||||||
|
[dash.dependencies.Input("final_score", "data")],
|
||||||
|
)
|
||||||
|
def update_final_scores_table(data):
|
||||||
|
assessment_scores = pd.DataFrame.from_records(data)
|
||||||
|
return [
|
||||||
|
{"id": c, "name": c} for c in assessment_scores.columns
|
||||||
|
], assessment_scores.to_dict("records")
|
||||||
|
|
||||||
|
|
||||||
|
@app.callback(
|
||||||
|
[
|
||||||
|
dash.dependencies.Output("final_score_describe", "columns"),
|
||||||
|
dash.dependencies.Output("final_score_describe", "data"),
|
||||||
|
],
|
||||||
|
[dash.dependencies.Input("final_score", "data")],
|
||||||
|
)
|
||||||
|
def update_final_scores_descr(data):
|
||||||
|
desc = pd.DataFrame.from_records(data)["Note"].describe()
|
||||||
|
return [{"id": c, "name": c} for c in desc.keys()], [desc.to_dict()]
|
||||||
|
|
||||||
|
|
||||||
|
@app.callback(
|
||||||
|
[
|
||||||
|
dash.dependencies.Output("fig_assessment_hist", "figure"),
|
||||||
|
],
|
||||||
|
[dash.dependencies.Input("final_score", "data")],
|
||||||
|
)
|
||||||
|
def update_final_scores_hist(data):
|
||||||
|
assessment_scores = pd.DataFrame.from_records(data)
|
||||||
|
ranges = np.linspace(
|
||||||
|
0, assessment_scores.Bareme.max(), int(assessment_scores.Bareme.max() * 2 + 1)
|
||||||
|
)
|
||||||
|
bins = pd.cut(assessment_scores["Note"], ranges)
|
||||||
|
assessment_scores["Bin"] = bins
|
||||||
|
assessment_grouped = (
|
||||||
|
assessment_scores.reset_index()
|
||||||
|
.groupby("Bin")
|
||||||
|
.agg({"Bareme": "count", "Eleve": lambda x: "\n".join(x)})
|
||||||
|
)
|
||||||
|
assessment_grouped.index = assessment_grouped.index.map(lambda i: i.right)
|
||||||
|
fig = go.Figure()
|
||||||
|
fig.add_bar(
|
||||||
|
x=assessment_grouped.index,
|
||||||
|
y=assessment_grouped.Bareme,
|
||||||
|
text=assessment_grouped.Eleve,
|
||||||
|
textposition="auto",
|
||||||
|
hovertemplate="",
|
||||||
|
marker_color="#4E89DE",
|
||||||
|
)
|
||||||
|
return [fig]
|
||||||
|
|
||||||
|
@app.callback(
|
||||||
|
[
|
||||||
|
dash.dependencies.Output("fig_competences", "figure"),
|
||||||
|
],
|
||||||
|
[dash.dependencies.Input("scores_table", "data")],
|
||||||
|
)
|
||||||
|
def update_competence_fig(data):
|
||||||
|
scores = pd.DataFrame.from_records(data)
|
||||||
|
scores = flat_df_students(scores).dropna(subset=["Score"])
|
||||||
|
scores = pp_q_scores(scores)
|
||||||
|
pt = pd.pivot_table(
|
||||||
|
scores,
|
||||||
|
index=["Exercice", "Question", "Commentaire"],
|
||||||
|
columns="Score",
|
||||||
|
aggfunc="size",
|
||||||
|
fill_value=0,
|
||||||
|
)
|
||||||
|
for i in {i for i in pt.index.get_level_values(0)}:
|
||||||
|
pt.loc[(str(i), "", ""), :] = ""
|
||||||
|
pt.sort_index(inplace=True)
|
||||||
|
index = (
|
||||||
|
pt.index.get_level_values(0)
|
||||||
|
+ ":"
|
||||||
|
+ pt.index.get_level_values(1)
|
||||||
|
+ " "
|
||||||
|
+ pt.index.get_level_values(2)
|
||||||
|
)
|
||||||
|
|
||||||
|
fig = go.Figure()
|
||||||
|
bars = [
|
||||||
|
{"score": -1, "name":"Pas de réponse", "color": COLORS["."]},
|
||||||
|
{"score": 0, "name":"Faut", "color": COLORS[0]},
|
||||||
|
{"score": 1, "name":"Peu juste", "color": COLORS[1]},
|
||||||
|
{"score": 2, "name":"Presque juste", "color": COLORS[2]},
|
||||||
|
{"score": 3, "name":"Juste", "color": COLORS[3]},
|
||||||
|
]
|
||||||
|
for b in bars:
|
||||||
|
try:
|
||||||
|
fig.add_bar(x=index, y=pt[b["score"]], name=b["name"], marker_color=b["color"])
|
||||||
|
except KeyError:
|
||||||
|
pass
|
||||||
|
fig.update_layout(barmode="relative")
|
||||||
|
return [fig]
|
||||||
|
|
||||||
|
@app.callback(
|
||||||
|
[dash.dependencies.Output("lastsave", "children")],
|
||||||
|
[
|
||||||
|
dash.dependencies.Input("scores_table", "data"),
|
||||||
|
dash.dependencies.State("csv", "value"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def save_scores(data, csv):
|
||||||
|
scores = pd.DataFrame.from_records(data)
|
||||||
|
print(f"save at {csv} ({datetime.today()})")
|
||||||
|
scores.to_csv(csv, index=False)
|
||||||
|
return [datetime.today()]
|
||||||
|
|
||||||
|
|
||||||
|
def highlight_value(df):
|
||||||
|
""" Cells style """
|
||||||
|
hight = []
|
||||||
|
for v, color in COLORS.items():
|
||||||
|
hight += [
|
||||||
|
{
|
||||||
|
"if": {"filter_query": "{{{}}} = {}".format(col, v), "column_id": col},
|
||||||
|
"backgroundColor": color,
|
||||||
|
"color": "white",
|
||||||
|
}
|
||||||
|
for col in df.columns
|
||||||
|
if col not in NO_ST_COLUMNS.values()
|
||||||
|
]
|
||||||
|
return hight
|
||||||
|
|
||||||
|
|
||||||
|
@app.callback(
|
||||||
|
[
|
||||||
|
dash.dependencies.Output("scores_table", "columns"),
|
||||||
|
dash.dependencies.Output("scores_table", "data"),
|
||||||
|
dash.dependencies.Output("scores_table", "style_data_conditional"),
|
||||||
|
],
|
||||||
|
[dash.dependencies.Input("csv", "value")],
|
||||||
|
)
|
||||||
|
def update_scores_table(value):
|
||||||
|
if not value:
|
||||||
|
raise PreventUpdate
|
||||||
|
stack = pd.read_csv(value, encoding="UTF8")
|
||||||
|
# try:
|
||||||
|
# stack = stack.drop(columns=["Nom", "Trimestre", "Date", "Competence", "Domaine", "Est_nivele", "Bareme"])
|
||||||
|
# except KeyError:
|
||||||
|
# stack = stack
|
||||||
|
return (
|
||||||
|
[{"id": c, "name": c} for c in stack.columns],
|
||||||
|
stack.to_dict("records"),
|
||||||
|
highlight_value(stack),
|
||||||
|
)
|
@ -13,7 +13,7 @@ from .getconfig import config, CONFIGPATH
|
|||||||
from .prompts import prompt_exam, prompt_exercise, prompt_validate
|
from .prompts import prompt_exam, prompt_exercise, prompt_validate
|
||||||
from ..config import NO_ST_COLUMNS
|
from ..config import NO_ST_COLUMNS
|
||||||
from .exam import Exam
|
from .exam import Exam
|
||||||
from ..dashboard.exam import app as exam_app
|
from .exam_dash import app as exam_app
|
||||||
|
|
||||||
|
|
||||||
@click.group()
|
@click.group()
|
||||||
@ -85,12 +85,10 @@ def new_exam():
|
|||||||
base_df.to_csv(exam.path(".csv"), index=False)
|
base_df.to_csv(exam.path(".csv"), index=False)
|
||||||
print(f"Le fichier note a été enregistré à {exam.path('.csv')}")
|
print(f"Le fichier note a été enregistré à {exam.path('.csv')}")
|
||||||
|
|
||||||
|
|
||||||
@cli.command()
|
@cli.command()
|
||||||
def exam_analysis():
|
def exam_analysis():
|
||||||
exam_app.run_server(debug=True)
|
exam_app.run_server(debug=True)
|
||||||
|
|
||||||
|
|
||||||
@cli.command()
|
@cli.command()
|
||||||
@click.argument("csv_file")
|
@click.argument("csv_file")
|
||||||
def report(csv_file):
|
def report(csv_file):
|
||||||
|
Loading…
Reference in New Issue
Block a user