Compare commits

10 Commits

18 changed files with 320 additions and 961 deletions

4
.gitignore vendored
View File

@@ -122,7 +122,3 @@ dmypy.json
# Pyre type checker
.pyre/
# vim
.vim

View File

@@ -6,29 +6,3 @@ Cette fois ci, on utilise:
- Des fichiers yaml pour les infos sur les élèves
- Des notebooks pour l'analyse
- Papermill pour produire les notesbooks à partir de template
## Les fichiers CSV
les paramètres sont décris dans ./recopytex/config.py
### Descriptions des questions
- Trimestre
- Nom
- Date
- Exercice
- Question
- Competence
- Domaine
- Commentaire
- Bareme
- Est_nivele
### Valeurs pour notes les élèves
- Score: 0, 1, 2, 3
- Pas de réponses: .
- Absent: a
- Dispensé: (vide)

View File

@@ -1,32 +0,0 @@
---
source: ./
output: ./
templates: templates/
competences:
Calculer:
name: Calculer
abrv: Cal
Représenter:
name: Représenter
abrv: Rep
Modéliser:
name: Modéliser
abrv: Mod
Raisonner:
name: Raisonner
abrv: Rai
Calculer:
name: Calculer
abrv: Cal
Communiquer:
name: Communiquer
abrv: Com
tribes:
- name: Tribe1
type: Type1
students: tribe1.csv
- name: Tribe2
students: tribe2.csv

View File

@@ -1,21 +0,0 @@
Nom,email
Star Tice,stice0@jalbum.net
Umberto Dingate,udingate1@tumblr.com
Starlin Crangle,scrangle2@wufoo.com
Humbert Bourcq,hbourcq3@g.co
Gabriella Handyside,ghandyside4@patch.com
Stewart Eaves,seaves5@ycombinator.com
Erick Going,egoing6@va.gov
Ase Praton,apraton7@va.gov
Rollins Planks,rplanks8@delicious.com
Dunstan Sarjant,dsarjant9@naver.com
Stacy Guiton,sguitona@themeforest.net
Ange Stanes,astanesb@marriott.com
Amabelle Elleton,aelletonc@squidoo.com
Darn Broomhall,dbroomhalld@cisco.com
Dyan Chatto,dchattoe@npr.org
Keane Rennebach,krennebachf@dot.gov
Nari Paulton,npaultong@gov.uk
Brandy Wase,bwaseh@ftc.gov
Jaclyn Firidolfi,jfiridolfii@reuters.com
Violette Lockney,vlockneyj@chron.com
1 Nom email
2 Star Tice stice0@jalbum.net
3 Umberto Dingate udingate1@tumblr.com
4 Starlin Crangle scrangle2@wufoo.com
5 Humbert Bourcq hbourcq3@g.co
6 Gabriella Handyside ghandyside4@patch.com
7 Stewart Eaves seaves5@ycombinator.com
8 Erick Going egoing6@va.gov
9 Ase Praton apraton7@va.gov
10 Rollins Planks rplanks8@delicious.com
11 Dunstan Sarjant dsarjant9@naver.com
12 Stacy Guiton sguitona@themeforest.net
13 Ange Stanes astanesb@marriott.com
14 Amabelle Elleton aelletonc@squidoo.com
15 Darn Broomhall dbroomhalld@cisco.com
16 Dyan Chatto dchattoe@npr.org
17 Keane Rennebach krennebachf@dot.gov
18 Nari Paulton npaultong@gov.uk
19 Brandy Wase bwaseh@ftc.gov
20 Jaclyn Firidolfi jfiridolfii@reuters.com
21 Violette Lockney vlockneyj@chron.com

View File

@@ -1,21 +0,0 @@
Nom,email
Elle McKintosh,emckintosh0@1und1.de
Ty Megany,tmegany1@reuters.com
Pippa Borrows,pborrows2@a8.net
Sonny Eskrick,seskrick3@123-reg.co.uk
Mollee Britch,mbritch4@usda.gov
Ingram Plaistowe,iplaistowe5@purevolume.com
Fay Vanyard,fvanyard6@sbwire.com
Nancy Rase,nrase7@omniture.com
Rachael Ruxton,rruxton8@bravesites.com
Tallie Rushmer,trushmer9@home.pl
Seward MacIlhagga,smacilhaggaa@hatena.ne.jp
Lizette Searl,lsearlb@list-manage.com
Talya Mannagh,tmannaghc@webnode.com
Jordan Witherbed,jwitherbedd@unesco.org
Reagan Botcherby,rbotcherbye@scientificamerican.com
Libbie Shoulder,lshoulderf@desdev.cn
Abner Khomich,akhomichg@youtube.com
Zollie Kitman,zkitmanh@forbes.com
Fiorenze Durden,fdurdeni@feedburner.com
Kevyn Race,kracej@seattletimes.com
1 Nom email
2 Elle McKintosh emckintosh0@1und1.de
3 Ty Megany tmegany1@reuters.com
4 Pippa Borrows pborrows2@a8.net
5 Sonny Eskrick seskrick3@123-reg.co.uk
6 Mollee Britch mbritch4@usda.gov
7 Ingram Plaistowe iplaistowe5@purevolume.com
8 Fay Vanyard fvanyard6@sbwire.com
9 Nancy Rase nrase7@omniture.com
10 Rachael Ruxton rruxton8@bravesites.com
11 Tallie Rushmer trushmer9@home.pl
12 Seward MacIlhagga smacilhaggaa@hatena.ne.jp
13 Lizette Searl lsearlb@list-manage.com
14 Talya Mannagh tmannaghc@webnode.com
15 Jordan Witherbed jwitherbedd@unesco.org
16 Reagan Botcherby rbotcherbye@scientificamerican.com
17 Libbie Shoulder lshoulderf@desdev.cn
18 Abner Khomich akhomichg@youtube.com
19 Zollie Kitman zkitmanh@forbes.com
20 Fiorenze Durden fdurdeni@feedburner.com
21 Kevyn Race kracej@seattletimes.com

View File

@@ -2,16 +2,16 @@
# encoding: utf-8
NO_ST_COLUMNS = {
"term": "Trimestre",
"assessment": "Nom",
"term": "Trimestre",
"date": "Date",
"exercise": "Exercice",
"question": "Question",
"competence": "Competence",
"theme": "Domaine",
"comment": "Commentaire",
"score_rate": "Bareme",
"is_leveled": "Est_nivele",
"score_rate": "Bareme",
}
COLUMNS = {

View File

@@ -6,9 +6,7 @@ import numpy as np
from math import ceil, floor
from .config import COLUMNS, VALIDSCORE
"""
Functions for manipulate score dataframes
"""
# Values manipulations
def round_half_point(val):
@@ -27,7 +25,6 @@ def score_to_mark(x):
otherwise it copies the score
:param x: dictionnary with COLUMNS["is_leveled"], COLUMNS["score"] and COLUMNS["score_rate"] keys
:return: the mark
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
@@ -46,10 +43,9 @@ def score_to_mark(x):
if x[COLUMNS["is_leveled"]]:
if x[COLUMNS["score"]] not in [0, 1, 2, 3]:
raise ValueError(
f"The evaluation is out of range: {x[COLUMNS['score']]} at {x}"
)
return round_half_point(x[COLUMNS["score"]] * x[COLUMNS["score_rate"]] / 3)
raise ValueError(f"The evaluation is out of range: {x[COLUMNS['score']]} at {x}")
#return round_half_point(x[COLUMNS["score"]] * x[COLUMNS["score_rate"]] / 3)
return round(x[COLUMNS["score"]] * x[COLUMNS["score_rate"]] / 3, 2)
if x[COLUMNS["score"]] > x[COLUMNS["score_rate"]]:
raise ValueError(
@@ -62,7 +58,6 @@ def score_to_level(x):
""" Compute the level (".",0,1,2,3).
:param x: dictionnary with COLUMNS["is_leveled"], COLUMNS["score"] and COLUMNS["score_rate"] keys
:return: the level
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
@@ -97,9 +92,7 @@ def score_to_level(x):
def compute_mark(df):
"""Compute the mark for the dataframe
apply score_to_mark to each row
""" Add Mark column to df
:param df: DataFrame with COLUMNS["score"], COLUMNS["is_leveled"] and COLUMNS["score_rate"] columns.
@@ -130,12 +123,9 @@ def compute_mark(df):
def compute_level(df):
"""Compute level for the dataframe
Applies score_to_level to each row
""" Add Mark column to df
:param df: DataFrame with COLUMNS["score"], COLUMNS["is_leveled"] and COLUMNS["score_rate"] columns.
:return: Columns with level
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
@@ -167,7 +157,6 @@ def compute_normalized(df):
""" Compute the normalized mark (Mark / score_rate)
:param df: DataFrame with "Mark" and COLUMNS["score_rate"] columns
:return: column with normalized mark
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... COLUMNS["score_rate"]:[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
@@ -200,8 +189,6 @@ def compute_normalized(df):
def pp_q_scores(df):
""" Postprocessing questions scores dataframe
Add 3 columns: mark, level and normalized
:param df: questions-scores dataframe
:return: same data frame with mark, level and normalize columns
"""

View File

@@ -0,0 +1,10 @@
#!/usr/bin/env python
# encoding: utf-8
import yaml
CONFIGPATH = "recoconfig.yml"
with open(CONFIGPATH, "r") as configfile:
config = yaml.load(configfile, Loader=yaml.FullLoader)

View File

@@ -1,132 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
from datetime import datetime
from pathlib import Path
from prompt_toolkit import HTML
import yaml
from .getconfig import config
class Exam:
def __init__(self, name, tribename, date, term, **kwrds):
self._name = name
self._tribename = tribename
try:
self._date = datetime.strptime(date, "%y%m%d")
except:
self._date = date
self._term = term
self._exercises = {}
@property
def name(self):
return self._name
@property
def tribename(self):
return self._tribename
@property
def date(self):
return self._date
@property
def term(self):
return self._term
def add_exercise(self, name, questions):
""" Add key with questions in ._exercises """
try:
self._exercises[name]
except KeyError:
self._exercises[name] = questions
else:
raise KeyError("The exercise already exsists. Use modify_exercise")
def modify_exercise(self, name, questions, append=False):
"""Modify questions of an exercise
If append==True, add questions to the exercise questions
"""
try:
self._exercises[name]
except KeyError:
raise KeyError("The exercise already exsists. Use modify_exercise")
else:
if append:
self._exercises[name] += questions
else:
self._exercises[name] = questions
@property
def exercices(self):
return self._exercises
@property
def tribe_path(self):
return Path(config["source"]) / self.tribename
@property
def tribe_student_path(self):
return (
Path(config["source"])
/ [t["students"] for t in config["tribes"] if t["name"] == self.tribename][
0
]
)
@property
def long_name(self):
""" Get exam name with date inside """
return f"{self.date.strftime('%y%m%d')}_{self.name}"
def path(self, extention=""):
return self.tribe_path / (self.long_name + extention)
def to_dict(self):
return {
"name": self.name,
"tribename": self.tribename,
"date": self.date,
"term": self.term,
"exercices": self.exercices,
}
def to_row(self):
rows = []
for ex, questions in self.exercices.items():
for q in questions:
rows.append(
{
"term": self.term,
"assessment": self.name,
"date": self.date.strftime("%d/%m/%Y"),
"exercise": ex,
"question": q["id"],
**q,
}
)
return rows
@property
def themes(self):
themes = set()
for questions in self._exercises.values():
themes.update([q["theme"] for q in questions])
return themes
def display_exercise(self, name):
pass
def display(self, name):
pass
def write(self):
print(f"Sauvegarde temporaire dans {self.path('.yml')}")
self.tribe_path.mkdir(exist_ok=True)
with open(self.path(".yml"), "w") as f:
f.write(yaml.dump(self.to_dict()))

View File

@@ -1,299 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
import dash
import dash_html_components as html
import dash_core_components as dcc
import dash_table
from dash.exceptions import PreventUpdate
import plotly.graph_objects as go
from pathlib import Path
from datetime import datetime
import pandas as pd
import numpy as np
from .. import flat_df_students, pp_q_scores
from ..config import NO_ST_COLUMNS
from .getconfig import config, CONFIGPATH
COLORS = {
".": "black",
0: "#E7472B",
1: "#FF712B",
2: "#F2EC4C",
3: "#68D42F",
}
external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"]
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
# app = dash.Dash(__name__)
app.layout = html.Div(
children=[
html.H1("Analyse des notes"),
html.Div(
[
"Classe: ",
dcc.Dropdown(
id="tribe",
options=[
{"label": t["name"], "value": t["name"]}
for t in config["tribes"]
],
value=config["tribes"][0]["name"],
),
"Evaluation: ",
dcc.Dropdown(id="csv"),
],
style={"columnCount": 2},
),
html.Div(
[
dash_table.DataTable(
id="final_score_table",
columns=[
{"id": "Élève", "name": "Élève"},
{"id": "Note", "name": "Note"},
{"id": "Barème", "name": "Bareme"},
],
data=[],
style_data_conditional=[
{
"if": {"row_index": "odd"},
"backgroundColor": "rgb(248, 248, 248)",
}
],
style_header={
"backgroundColor": "rgb(230, 230, 230)",
"fontWeight": "bold",
},
style_data={
"width": "100px",
"maxWidth": "100px",
"minWidth": "100px",
},
),
html.Div(
[
dash_table.DataTable(
id="final_score_describe",
),
dcc.Graph(id="fig_assessment_hist"),
dcc.Graph(id="fig_competences"),
]
),
],
style={"columnCount": 2},
),
html.Br(),
html.Div(
[
dash_table.DataTable(
id="scores_table",
columns=[{"id": c, "name": c} for c in NO_ST_COLUMNS.values()],
style_cell={
"whiteSpace": "normal",
"height": "auto",
},
style_data_conditional=[],
editable=True,
)
]
),
html.P(id="lastsave"),
dcc.Store(id="final_score"),
]
)
@app.callback(
[
dash.dependencies.Output("csv", "options"),
dash.dependencies.Output("csv", "value"),
],
[dash.dependencies.Input("tribe", "value")],
)
def update_csvs(value):
if not value:
raise PreventUpdate
p = Path(value)
csvs = list(p.glob("*.csv"))
try:
return [{"label": str(c), "value": str(c)} for c in csvs], str(csvs[0])
except IndexError:
return []
@app.callback(
[
dash.dependencies.Output("final_score", "data"),
],
[dash.dependencies.Input("scores_table", "data")],
)
def update_final_scores(data):
if not data:
raise PreventUpdate
try:
scores = pd.DataFrame.from_records(data)
scores = flat_df_students(scores).dropna(subset=["Score"])
scores = pp_q_scores(scores)
assessment_scores = scores.groupby(["Eleve"]).agg(
{"Note": "sum", "Bareme": "sum"}
)
return [assessment_scores.reset_index().to_dict("records")]
except KeyError:
raise PreventUpdate
@app.callback(
[
dash.dependencies.Output("final_score_table", "columns"),
dash.dependencies.Output("final_score_table", "data"),
],
[dash.dependencies.Input("final_score", "data")],
)
def update_final_scores_table(data):
assessment_scores = pd.DataFrame.from_records(data)
return [
{"id": c, "name": c} for c in assessment_scores.columns
], assessment_scores.to_dict("records")
@app.callback(
[
dash.dependencies.Output("final_score_describe", "columns"),
dash.dependencies.Output("final_score_describe", "data"),
],
[dash.dependencies.Input("final_score", "data")],
)
def update_final_scores_descr(data):
desc = pd.DataFrame.from_records(data)["Note"].describe()
return [{"id": c, "name": c} for c in desc.keys()], [desc.to_dict()]
@app.callback(
[
dash.dependencies.Output("fig_assessment_hist", "figure"),
],
[dash.dependencies.Input("final_score", "data")],
)
def update_final_scores_hist(data):
assessment_scores = pd.DataFrame.from_records(data)
ranges = np.linspace(
0, assessment_scores.Bareme.max(), int(assessment_scores.Bareme.max() * 2 + 1)
)
bins = pd.cut(assessment_scores["Note"], ranges)
assessment_scores["Bin"] = bins
assessment_grouped = (
assessment_scores.reset_index()
.groupby("Bin")
.agg({"Bareme": "count", "Eleve": lambda x: "\n".join(x)})
)
assessment_grouped.index = assessment_grouped.index.map(lambda i: i.right)
fig = go.Figure()
fig.add_bar(
x=assessment_grouped.index,
y=assessment_grouped.Bareme,
text=assessment_grouped.Eleve,
textposition="auto",
hovertemplate="",
marker_color="#4E89DE",
)
return [fig]
@app.callback(
[
dash.dependencies.Output("fig_competences", "figure"),
],
[dash.dependencies.Input("scores_table", "data")],
)
def update_competence_fig(data):
scores = pd.DataFrame.from_records(data)
scores = flat_df_students(scores).dropna(subset=["Score"])
scores = pp_q_scores(scores)
pt = pd.pivot_table(
scores,
index=["Exercice", "Question", "Commentaire"],
columns="Score",
aggfunc="size",
fill_value=0,
)
for i in {i for i in pt.index.get_level_values(0)}:
pt.loc[(str(i), "", ""), :] = ""
pt.sort_index(inplace=True)
index = (
pt.index.get_level_values(0)
+ ":"
+ pt.index.get_level_values(1)
+ " "
+ pt.index.get_level_values(2)
)
fig = go.Figure()
bars = [
{"score": -1, "name":"Pas de réponse", "color": COLORS["."]},
{"score": 0, "name":"Faut", "color": COLORS[0]},
{"score": 1, "name":"Peu juste", "color": COLORS[1]},
{"score": 2, "name":"Presque juste", "color": COLORS[2]},
{"score": 3, "name":"Juste", "color": COLORS[3]},
]
for b in bars:
try:
fig.add_bar(x=index, y=pt[b["score"]], name=b["name"], marker_color=b["color"])
except KeyError:
pass
fig.update_layout(barmode="relative")
return [fig]
@app.callback(
[dash.dependencies.Output("lastsave", "children")],
[
dash.dependencies.Input("scores_table", "data"),
dash.dependencies.State("csv", "value"),
],
)
def save_scores(data, csv):
scores = pd.DataFrame.from_records(data)
print(f"save at {csv} ({datetime.today()})")
scores.to_csv(csv, index=False)
return [datetime.today()]
def highlight_value(df):
""" Cells style """
hight = []
for v, color in COLORS.items():
hight += [
{
"if": {"filter_query": "{{{}}} = {}".format(col, v), "column_id": col},
"backgroundColor": color,
"color": "white",
}
for col in df.columns
if col not in NO_ST_COLUMNS.values()
]
return hight
@app.callback(
[
dash.dependencies.Output("scores_table", "columns"),
dash.dependencies.Output("scores_table", "data"),
dash.dependencies.Output("scores_table", "style_data_conditional"),
],
[dash.dependencies.Input("csv", "value")],
)
def update_scores_table(value):
if not value:
raise PreventUpdate
stack = pd.read_csv(value, encoding="UTF8")
# try:
# stack = stack.drop(columns=["Nom", "Trimestre", "Date", "Competence", "Domaine", "Est_nivele", "Bareme"])
# except KeyError:
# stack = stack
return (
[{"id": c, "name": c} for c in stack.columns],
stack.to_dict("records"),
highlight_value(stack),
)

View File

@@ -1,9 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
import yaml
CONFIGPATH = "recoconfig.yml"
with open(CONFIGPATH, "r") as config:
config = yaml.load(config, Loader=yaml.FullLoader)

View File

@@ -0,0 +1,160 @@
#!/usr/bin/env python
# encoding: utf-8
import click
from pathlib import Path
from datetime import datetime
from PyInquirer import prompt, print_json
import pandas as pd
import numpy as np
from .config import config
from ..config import NO_ST_COLUMNS
class PromptAbortException(EOFError):
def __init__(self, message, errors=None):
# Call the base class constructor with the parameters it needs
super(PromptAbortException, self).__init__("Abort questionnary", errors)
def get_tribes(answers):
""" List tribes based on subdirectory of config["source"] which have an "eleves.csv" file inside """
return [
p.name for p in Path(config["source"]).iterdir() if (p / "eleves.csv").exists()
]
def prepare_csv():
items = new_eval()
item = items[0]
# item = {"tribe": "308", "date": datetime.today(), "assessment": "plop"}
csv_output = (
Path(config["source"])
/ item["tribe"]
/ f"{item['date']:%y%m%d}_{item['assessment']}.csv"
)
students = pd.read_csv(Path(config["source"]) / item["tribe"] / "eleves.csv")["Nom"]
columns = list(NO_ST_COLUMNS.keys())
items = [[it[c] for c in columns] for it in items]
columns = list(NO_ST_COLUMNS.values())
items_df = pd.DataFrame.from_records(items, columns=columns)
for s in students:
items_df[s] = np.nan
items_df.to_csv(csv_output, index=False, date_format="%d/%m/%Y")
click.echo(f"Saving csv file to {csv_output}")
def new_eval(answers={}):
click.echo(f"Préparation d'un nouveau devoir")
eval_questions = [
{"type": "input", "name": "assessment", "message": "Nom de l'évaluation",},
{
"type": "list",
"name": "tribe",
"message": "Classe concernée",
"choices": get_tribes,
},
{
"type": "input",
"name": "date",
"message": "Date du devoir (%y%m%d)",
"default": datetime.today().strftime("%y%m%d"),
"filter": lambda val: datetime.strptime(val, "%y%m%d"),
},
{
"type": "list",
"name": "term",
"message": "Trimestre",
"choices": ["1", "2", "3"],
},
]
eval_ans = prompt(eval_questions)
items = []
add_exo = True
while add_exo:
ex_items = new_exercice(eval_ans)
items += ex_items
add_exo = prompt(
[
{
"type": "confirm",
"name": "add_exo",
"message": "Ajouter un autre exercice",
"default": True,
}
]
)["add_exo"]
return items
def new_exercice(answers={}):
exercise_questions = [
{"type": "input", "name": "exercise", "message": "Nom de l'exercice"},
]
click.echo(f"Nouvel exercice")
exercise_ans = prompt(exercise_questions, answers=answers)
items = []
add_item = True
while add_item:
try:
item_ans = new_item(exercise_ans)
except PromptAbortException:
click.echo("Création de l'item annulée")
else:
items.append(item_ans)
add_item = prompt(
[
{
"type": "confirm",
"name": "add_item",
"message": f"Ajouter un autre item pour l'exercice {exercise_ans['exercise']}",
"default": True,
}
]
)["add_item"]
return items
def new_item(answers={}):
item_questions = [
{"type": "input", "name": "question", "message": "Nom de l'item",},
{"type": "input", "name": "comment", "message": "Commentaire",},
{
"type": "list",
"name": "competence",
"message": "Competence",
"choices": ["Cher", "Rep", "Mod", "Rai", "Cal", "Com"],
},
{"type": "input", "name": "theme", "message": "Domaine",},
{
"type": "confirm",
"name": "is_leveled",
"message": "Évaluation par niveau",
"default": True,
},
{"type": "input", "name": "score_rate", "message": "Bareme"},
{
"type": "confirm",
"name": "correct",
"message": "Tout est correct?",
"default": True,
},
]
click.echo(f"Nouvelle question pour l'exercice {answers['exercise']}")
item_ans = prompt(item_questions, answers=answers)
if item_ans["correct"]:
return item_ans
raise PromptAbortException("Abort item creation")

View File

@@ -1,233 +0,0 @@
#!/usr/bin/env python
# encoding: utf-8
from prompt_toolkit import prompt, HTML, ANSI
from prompt_toolkit import print_formatted_text as print
from prompt_toolkit.styles import Style
from prompt_toolkit.validation import Validator
from prompt_toolkit.completion import WordCompleter
from unidecode import unidecode
from datetime import datetime
from functools import wraps
import sys
from .getconfig import config
VALIDATE = [
"o",
"ok",
"OK",
"oui",
"OUI",
"yes",
"YES",
]
REFUSE = ["n", "non", "NON", "no", "NO"]
CANCEL = ["a", "annuler"]
STYLE = Style.from_dict(
{
"": "#93A1A1",
"validation": "#884444",
"appending": "#448844",
}
)
class CancelError(Exception):
pass
def prompt_validate(question, cancelable=False, empty_means=1, style="validation"):
"""Prompt for validation
:param question: Text to print to ask the question.
:param cancelable: enable cancel answer
:param empty_means: result for no answer
:return:
0 -> Refuse
1 -> Validate
-1 -> cancel
"""
question_ = question
choices = VALIDATE + REFUSE
if cancelable:
question_ += "(a ou annuler pour sortir)"
choices += CANCEL
ans = prompt(
[
(f"class:{style}", question_),
],
completer=WordCompleter(choices),
style=STYLE,
).lower()
if ans == "":
return empty_means
if ans in VALIDATE:
return 1
if cancelable and ans in CANCEL:
return -1
return 0
def prompt_until_validate(question="C'est ok? ", cancelable=False):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwrd):
ans = func(*args, **kwrd)
confirm = prompt_validate(question, cancelable)
if confirm == -1:
raise CancelError
while not confirm:
sys.stdout.flush()
ans = func(*args, **ans, **kwrd)
confirm = prompt_validate(question, cancelable)
if confirm == -1:
raise CancelError
return ans
return wrapper
return decorator
@prompt_until_validate()
def prompt_exam(**kwrd):
""" Prompt questions to edit an exam """
print(HTML("<b>Nouvelle évaluation</b>"))
exam = {}
exam["name"] = prompt("Nom de l'évaluation: ", default=kwrd.get("name", "DS"))
tribes_name = [t["name"] for t in config["tribes"]]
exam["tribename"] = prompt(
"Nom de la classe: ",
default=kwrd.get("tribename", ""),
completer=WordCompleter(tribes_name),
validator=Validator.from_callable(lambda x: x in tribes_name),
)
exam["tribe"] = [t for t in config["tribes"] if t["name"] == exam["tribename"]][0]
exam["date"] = prompt(
"Date de l'évaluation (%y%m%d): ",
default=kwrd.get("date", datetime.today()).strftime("%y%m%d"),
validator=Validator.from_callable(lambda x: (len(x) == 6) and x.isdigit()),
)
exam["date"] = datetime.strptime(exam["date"], "%y%m%d")
exam["term"] = prompt(
"Trimestre: ",
validator=Validator.from_callable(lambda x: x.isdigit()),
default=kwrd.get("term", "1"),
)
return exam
@prompt_until_validate()
def prompt_exercise(number=1, completer={}, **kwrd):
exercise = {}
try:
kwrd["name"]
except KeyError:
print(HTML("<b>Nouvel exercice</b>"))
exercise["name"] = prompt(
"Nom de l'exercice: ", default=kwrd.get("name", f"Exercice {number}")
)
else:
print(HTML(f"<b>Modification de l'exercice: {kwrd['name']}</b>"))
exercise["name"] = kwrd["name"]
exercise["questions"] = []
try:
kwrd["questions"][0]
except KeyError:
last_question_id = "1a"
except IndexError:
last_question_id = "1a"
else:
for ques in kwrd["questions"]:
try:
exercise["questions"].append(
prompt_question(completer=completer, **ques)
)
except CancelError:
print("Cette question a été supprimée")
last_question_id = exercise["questions"][-1]["id"]
appending = prompt_validate(
question="Ajouter un élément de notation? ", style="appending"
)
while appending:
try:
exercise["questions"].append(
prompt_question(last_question_id, completer=completer)
)
except CancelError:
print("Cette question a été supprimée")
else:
last_question_id = exercise["questions"][-1]["id"]
appending = prompt_validate(
question="Ajouter un élément de notation? ", style="appending"
)
return exercise
@prompt_until_validate(cancelable=True)
def prompt_question(last_question_id="1a", completer={}, **kwrd):
try:
kwrd["id"]
except KeyError:
print(HTML("<b>Nouvel élément de notation</b>"))
else:
print(
HTML(f"<b>Modification de l'élément {kwrd['id']} ({kwrd['comment']})</b>")
)
question = {}
question["id"] = prompt(
"Identifiant de la question: ",
default=kwrd.get("id", "1a"),
)
question["competence"] = prompt(
"Competence: ",
default=kwrd.get("competence", list(config["competences"].keys())[0]),
completer=WordCompleter(config["competences"].keys()),
validator=Validator.from_callable(lambda x: x in config["competences"].keys()),
)
question["theme"] = prompt(
"Domaine: ",
default=kwrd.get("theme", ""),
completer=WordCompleter(completer.get("theme", [])),
)
question["comment"] = prompt(
"Commentaire: ",
default=kwrd.get("comment", ""),
)
question["is_leveled"] = prompt(
"Évaluation par niveau: ",
default=kwrd.get("is_leveled", "1"),
# validate
)
question["score_rate"] = prompt(
"Barème: ",
default=kwrd.get("score_rate", "1"),
# validate
)
return question

View File

@@ -3,17 +3,13 @@
import click
from pathlib import Path
import yaml
import sys
import papermill as pm
import pandas as pd
from datetime import datetime
import yaml
from .getconfig import config, CONFIGPATH
from .prompts import prompt_exam, prompt_exercise, prompt_validate
from ..config import NO_ST_COLUMNS
from .exam import Exam
from .exam_dash import app as exam_app
from .prepare_csv import prepare_csv
from .config import config
@click.group()
@@ -28,79 +24,8 @@ def print_config():
click.echo(config)
@cli.command()
def setup():
"""Setup the environnement using recoconfig.yml"""
for tribe in config["tribes"]:
Path(tribe["name"]).mkdir(exist_ok=True)
if not Path(tribe["students"]).exists():
print(f"The file {tribe['students']} does not exists")
@cli.command()
def new_exam():
""" Create new exam csv file """
exam = Exam(**prompt_exam())
if exam.path(".yml").exists():
print(f"Fichier sauvegarde trouvé à {exam.path('.yml')} -- importation")
with open(exam.path(".yml"), "r") as f:
for name, questions in yaml.load(f, Loader=yaml.SafeLoader)[
"exercices"
].items():
exam.add_exercise(name, questions)
print(exam.themes)
# print(yaml.dump(exam.to_dict()))
exam.write()
for name, questions in exam.exercices.items():
exam.modify_exercise(
**prompt_exercise(
name=name, completer={"theme": exam.themes}, questions=questions
)
)
exam.write()
new_exercise = prompt_validate("Ajouter un exercice? ")
while new_exercise:
exam.add_exercise(
**prompt_exercise(len(exam.exercices) + 1, completer={"theme": exam.themes})
)
exam.write()
new_exercise = prompt_validate("Ajouter un exercice? ")
rows = exam.to_row()
base_df = pd.DataFrame.from_dict(rows)[NO_ST_COLUMNS.keys()]
base_df.rename(columns=NO_ST_COLUMNS, inplace=True)
students = pd.read_csv(exam.tribe_student_path)["Nom"]
for student in students:
base_df[student] = ""
exam.tribe_path.mkdir(exist_ok=True)
base_df.to_csv(exam.path(".csv"), index=False)
print(f"Le fichier note a été enregistré à {exam.path('.csv')}")
@cli.command()
def exam_analysis():
exam_app.run_server(debug=True)
@cli.command()
@click.argument("csv_file")
def report(csv_file):
csv = Path(csv_file)
if not csv.exists():
click.echo(f"{csv_file} does not exists")
sys.exit(1)
if csv.suffix != ".csv":
click.echo(f"{csv_file} has to be a csv file")
sys.exit(1)
csv_file = Path(csv_file)
def reporting(csv_file):
# csv_file = Path(csv_file)
tribe_dir = csv_file.parent
csv_filename = csv_file.name.split(".")[0]
@@ -109,7 +34,7 @@ def report(csv_file):
try:
date = datetime.strptime(date, "%y%m%d")
except ValueError:
date = None
date = datetime.today().strptime(date, "%y%m%d")
tribe = str(tribe_dir).split("/")[-1]
@@ -129,3 +54,49 @@ def report(csv_file):
csv_file=str(csv_file.absolute()),
),
)
@cli.command()
@click.argument("target", required=False)
def report(target=""):
""" Make a report for the eval
:param target: csv file or a directory where csvs are
"""
try:
if target.endswith(".csv"):
csv = Path(target)
if not csv.exists():
click.echo(f"{target} does not exists")
sys.exit(1)
if csv.suffix != ".csv":
click.echo(f"{target} has to be a csv file")
sys.exit(1)
csvs = [csv]
else:
csvs = list(Path(target).glob("**/*.csv"))
except AttributeError:
csvs = list(Path(config["source"]).glob("**/*.csv"))
for csv in csvs:
click.echo(f"Processing {csv}")
try:
reporting(csv)
except pm.exceptions.PapermillExecutionError as e:
click.echo(f"Error with {csv}: {e}")
@cli.command()
def prepare():
""" Prepare csv file """
items = prepare_csv()
click.echo(items)
@cli.command()
@click.argument("tribe")
def random_pick(tribe):
""" Randomly pick a student """
pass

View File

@@ -1,4 +1,76 @@
pandas
click
papermill
prompt_toolkit
ansiwrap==0.8.4
appdirs==1.4.3
attrs==19.1.0
backcall==0.1.0
black==19.10b0
bleach==3.1.0
certifi==2019.6.16
chardet==3.0.4
Click==7.0
colorama==0.4.1
cycler==0.10.0
decorator==4.4.0
defusedxml==0.6.0
entrypoints==0.3
future==0.17.1
idna==2.8
importlib-resources==1.0.2
ipykernel==5.1.3
ipython==7.11.1
ipython-genutils==0.2.0
ipywidgets==7.5.1
jedi==0.15.2
Jinja2==2.10.3
jsonschema==3.2.0
jupyter==1.0.0
jupyter-client==5.3.4
jupyter-console==6.1.0
jupyter-core==4.6.1
jupytex==0.0.3
kiwisolver==1.1.0
Markdown==3.1.1
MarkupSafe==1.1.1
matplotlib==3.1.2
mistune==0.8.4
nbconvert==5.6.1
nbformat==5.0.3
notebook==6.0.3
numpy==1.18.1
pandas==0.25.3
pandocfilters==1.4.2
papermill==1.2.1
parso==0.5.2
pathspec==0.7.0
pexpect==4.8.0
pickleshare==0.7.5
prometheus-client==0.7.1
prompt-toolkit==1.0.14
ptyprocess==0.6.0
Pygments==2.5.2
PyInquirer==1.0.3
pyparsing==2.4.6
pyrsistent==0.15.7
python-dateutil==2.8.0
pytz==2019.3
PyYAML==5.3
pyzmq==18.1.1
qtconsole==4.6.0
-e git+git_opytex:/lafrite/recopytex.git@7e026bedb24c1ca8bef3b71b3d63f8b0d6916e81#egg=Recopytex
regex==2020.1.8
requests==2.22.0
scipy==1.4.1
Send2Trash==1.5.0
six==1.12.0
tenacity==6.0.0
terminado==0.8.3
testpath==0.4.4
textwrap3==0.9.2
toml==0.10.0
tornado==6.0.3
tqdm==4.41.1
traitlets==4.3.2
typed-ast==1.4.1
urllib3==1.25.8
wcwidth==0.1.8
webencodings==0.5.1
widgetsnbextension==3.5.1

View File

@@ -1,69 +0,0 @@
ansiwrap
attrs
backcall
bleach
certifi
chardet
Click
colorama
cycler
decorator
defusedxml
entrypoints
future
idna
importlib-resources
ipykernel
ipython
ipython-genutils
ipywidgets
jedi
Jinja2
jsonschema
jupyter
jupyter-client
jupyter-console
jupyter-core
jupytex
kiwisolver
MarkupSafe
matplotlib
mistune
nbconvert
nbformat
notebook
numpy
pandas
pandocfilters
papermill
parso
pexpect
pickleshare
prometheus-client
prompt-toolkit
ptyprocess
Pygments
pyparsing
pyrsistent
python-dateutil
pytz
PyYAML
pyzmq
qtconsole
-e git+git_opytex:/lafrite/recopytex.git@e9a8310f151ead60434ae944d726a2fd22b23d06#egg=Recopytex
requests
scipy
seaborn
Send2Trash
six
tenacity
terminado
testpath
textwrap3
tornado
tqdm
traitlets
urllib3
wcwidth
webencodings
widgetsnbextension

View File

@@ -5,7 +5,7 @@ from setuptools import setup, find_packages
setup(
name='Recopytex',
version='0.1',
version='1.1.1',
description='Assessment analysis',
author='Benjamin Bertrand',
author_email='',
@@ -13,6 +13,11 @@ setup(
include_package_data=True,
install_requires=[
'Click',
'pandas',
'numpy',
'papermill',
'pyyaml',
'PyInquirer',
],
entry_points='''
[console_scripts]