{ "cells": [ { "cell_type": "code", "execution_count": 36, "metadata": { "tags": [ "parameters" ] }, "outputs": [], "source": [ "tribe = \"308\"\n", "assessment = \"161114_dm2\"" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "from IPython.display import Markdown as md\n", "import pandas as pd\n", "from pathlib import Path" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "csv_file = Path(f\"./sheets/{tribe}/{assessment}.csv\")" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "# Ds1 pour 308" ], "text/plain": [ "" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "md(f\"# {assessment} pour {tribe}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }