{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from IPython.display import Markdown as md\n", "from IPython.display import DisplayHandle\n", "import pandas as pd\n", "from pathlib import Path\n", "from datetime import datetime" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "parameters" ] }, "outputs": [], "source": [ "tribe = \"308\"\n", "assessment = \"161114_dm2\"\n", "csv_file = Path(f\"./sheets/{tribe}/{assessment}.csv\")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "split_ass = assessment.split(\"_\")\n", "if len(split_ass) > 1:\n", " date, *assessment = assessment.split(\"_\")\n", " date = datetime.strptime(date, \"%y%m%d\")\n", " assessment = ' '.join(assessment)\n", "else:\n", " date = None\n", " assessment = split_ass[0]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "# dm2 (14/11/2016) pour 308" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "if date is None:\n", " display(md(f\"# {assessment} pour {tribe}\"))\n", "else:\n", " display(md(f\"# {assessment} ({date:%d/%m/%Y}) pour {tribe}\"))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }