recopytex/templates/tpl_evaluation.ipynb

83 lines
1.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import Markdown as md\n",
"import pandas as pd\n",
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"tags": [
"parameters"
]
},
"outputs": [],
"source": [
"tribe = \"308\"\n",
"assessment = \"161114_dm2\"\n",
"csv_file = Path(f\"./sheets/{tribe}/{assessment}.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"# Ds1 pour 308"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"md(f\"# {assessment} pour {tribe}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}